11-Demethyltomaymycin

11-Demethyltomaymycin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-00833
CAS 55511-85-8
Molecular Weight 290.31
Molecular Formula C15H18N2O4

Online Inquiry

Description

11-Demethyltomaymycin is an antibiotic produced by Streptomyces achromogenes var. tomayrnyceticus. Antiviral.

Specification

Synonyms 5H-Pyrrolo(2,1-c)(1,4)benzodiazepin-5-one, 2-ethylidene-1,2,3,10,11,11a-hexahydro-8,11-dihydroxy-7-methoxy-
IUPAC Name (6R,6aS,8E)-8-ethylidene-3,6-dihydroxy-2-methoxy-6,6a,7,9-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-11-one
Canonical SMILES CC=C1CC2C(NC3=CC(=C(C=C3C(=O)N2C1)OC)O)O
InChI InChI=1S/C15H18N2O4/c1-3-8-4-11-14(19)16-10-6-12(18)13(21-2)5-9(10)15(20)17(11)7-8/h3,5-6,11,14,16,18-19H,4,7H2,1-2H3/b8-3+/t11-,14+/m0/s1
InChI Key QUYGRHFKOMIUQW-CYXMTJDRSA-N

Properties

Antibiotic Activity Spectrum viruses

Reference Reading

1. Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic 11-demethyltomaymycin and its biologically inactive metabolite oxotomaymycin by Streptomyces achromogenes
L H Hurley, C Gairola, N V Das Biochemistry. 1976 Aug 24;15(17):3760-9. doi: 10.1021/bi00662a019.
11-Demethyltomaymycin, an antitumor antibiotic produced by Streptomyces achromogenes, and its biologically inactive metabolite oxotomaymycin are biosynthesized from L-tyrosine, DL-tryptophan, and L-methionine. The anthranilate part of 11-demethyltomaymycin is derived from tryptophan probably via the kynurenine pathway. The predominant loss of tritium from DL-[5-3H]tryptophan, during its conversion to 11-demethyltomaymycin and oxotomaymycin is interpreted to mean by NIH shift rules, that the main pathway to the 5-methoxy-4-hydroxy anthranilate moiety is through hydroxylation at C-8 prior to hydroxylation at C-7. The methoxy carbon is derived from the S-methyl group of methionine by transfer of an intact methyl group. The ethylideneproline moiety of 11-demethyltomaymycin is biosynthesized from tyrosine, without a 1-carbon unit from methionine. The results of biosynthetic feeding experiments with L-[1-14C, 3- or 5-3H]tyrosine are consistent with a "meta" or extradiol cleavage of 6,7-dihydroxycyclodopa as has also been demonstrated previously for anthramycin and lincomycin A. An experiment in which L-[1-14C, Ala-2,3-3H]tyrosine was fed showed that both the beta hydrogens of this amino acids are retained in 11-demethyltomaymycin. It has been demonstrated in cultures and washed cell preparations that 11-demethyltomaymycin is enzymatically converted to oxotomaymycin by an intracellular constitutive enzyme. Conversion of oxotomaymycin to 11-demethyltomaymycin by these same preparations could not be demonstrated. The enzymatic activity associated with the conversion of 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin to oxotomaymycin is not limited to the 11-demethyltomaymycin production phase, since trophophase cells and even cells from 11-demethyltomaymycin nonproducing cultures of S. achromogenes were equally active in converting 11-demethyltomaymycin to oxotomaymycin.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket