15-Acetyl-DON

15-Acetyl-DON

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

15-Acetyl-DON
Category Mycotoxins
Catalog number BBF-05792
CAS 88337-96-6
Molecular Weight 338.35
Molecular Formula C17H22O7
Purity ≥98%

Online Inquiry

Description

15-Acetyl-DON is a mycotoxin produced by the fungi Fusarium culmorum and Fusarium graminearum. It can inhibit protein synthesis.

Specification

Synonyms (3α,7α)-15-(Acetyloxy)-12,13-epoxy-3,7-dihydroxy-trichothec-9-en-8-one; 15-Acetylvomitoxin; 15-O-Acetyl-4-deoxynivalenol; Deoxynivalenol 15-Acetate; 15-Acetyl Deoxynivalenol; 15-Acetoxy-3alpha,7alpha-dihydroxy-12,13-epoxytrichothec-9-en-8-one; (3alpha,7alpha)-15-(acetyloxy)-12,13-epoxy-3,7-dihydroxytrichothec-9-en-8-one
Storage Store at -20°C
IUPAC Name [(1R,2R,3S,7R,9R,10R,12S)-3,10-dihydroxy-1,5-dimethyl-4-oxospiro[8-oxatricyclo[7.2.1.02,7]dodec-5-ene-12,2'-oxirane]-2-yl]methyl acetate
Canonical SMILES CC1=CC2C(C(C1=O)O)(C3(CC(C(C34CO4)O2)O)C)COC(=O)C
InChI InChI=1S/C17H22O7/c1-8-4-11-16(6-22-9(2)18,13(21)12(8)20)15(3)5-10(19)14(24-11)17(15)7-23-17/h4,10-11,13-14,19,21H,5-7H2,1-3H3/t10-,11-,13-,14-,15-,16-,17+/m1/s1
InChI Key IDGRYIRJIFKTAN-HTJQZXIKSA-N
Source Trichothecenes are produced on many different grains like wheat, oats or maize by various Fusarium species such as F. graminearum, F. sporotrichioides, F. poae and F. equiseti.

Properties

Appearance White to Off-white Solid
Boiling Point 538.6±50.0°C (Predicted)
Melting Point >130°C (dec.)
Density 1.42±0.1 g/cm3 (Predicted)
Solubility Soluble in Chloroform (Slightly), Ethyl Acetate (Slightly), Methanol (Slightly)

Toxicity

Carcinogenicity No indication of carcinogenicity to humans (not listed by IARC).
Mechanism Of Toxicity 15-Acetyl-DON is a member of type B trichothecene mycotoxin. Unlike many other mycotoxins, trichothecenes do not require metabolic activation to exert their biological activity, instead directly reacting with cellular components. Trichothecenes are cytotoxic to most eukaryotic cells due to their powerful ability to inhibit protein synthesis. They do this by freely moving across the plasma membrane and binding specifically to ribosomes with high-affinity. Specifically, they interfere with the active site of peptidyl transferase at the 3'-end of large 28S ribosomal RNA and inhibit the initiation, elongation or termination step of protein synthesis, as well as cause polyribosomal disaggregation. Protein synthesis is an essential function in all tissues, but tissues where cells are actively and rapidly growing and dividing are very susceptible to the toxins. Additionally, binding to ribosomes is thought to activate proteins in downstream signalling events related to immune response and apoptosis, such as mitogen-activated protein kinases. This is known as ribotoxic stress response. Trichothecenes may also induce some alterations in membrane structure, leading to increased lipid peroxidation and inhibition of electron transport activity in the mitochondria. They can further induce apoptosis through generation of reactive oxygen species. Further secondary effects of trichothecenes include inhibition of RNA and DNA synthesis, and also inhibition of mitosis.

Reference Reading

1. Interindividual Differences in In Vitro Human Intestinal Microbial Conversion of 3-Acetyl-DON and 15-Acetyl-DON
Fangfang Li, Jing Jin, Ivonne M C M Rietjens, Fuguo Xing Toxins (Basel). 2022 Mar 7;14(3):199. doi: 10.3390/toxins14030199.
In order to evaluate the potential differences between 3-Ac-DON and 15-Ac-DON in the human intestinal microbial metabolism, human fecal samples were anaerobically cultured in vitro. Quantitative fecal microbiota characteristics were obtained by 16S rRNA sequencing, and the data revealed several genera that may be relevant for the transformation of the acetylated DONs. Significant differences in the level of 3-Ac-DON and 15-Ac-DON conversion were observed among microbiota from different human individuals. 3-Ac-DON could be rapidly hydrolyzed; a ten-fold difference was observed between the highest and lowest in vitro conversion after 4 h. However, 15-Ac-DON was not fully transformed in the 4 h culture of all the individual samples. In all cases, the conversion rate of 3-Ac-DON was higher than that of 15-Ac-DON, and the conversion rate of 3-Ac-DON into DON varied from 1.3- to 8.4-fold that of 15-Ac-DON. Based on in vitro conversion rates, it was estimated that 45-452 min is required to convert all 3-Ac-DON to DON, implying that deacetylation of 3-Ac-DON is likely to occur completely in all human individuals during intestinal transit. However, for conversion of 15-Ac-DON, DON formation was undetectable at 4 h incubation in 8 out of the 25 human samples, while for 7 of these 8 samples conversion to DON was detected at 24 h incubation. The conversion rates obtained for these seven samples indicated that it would take 1925-4805 min to convert all 15-Ac-DON to DON, while the other 17 samples required 173-734 min. From these results it followed that for eight of the 25 individuals, conversion of 15-Ac-DON to DON was estimated to be incomplete during the 1848 min intestinal transit time. The results thus indicate substantial interindividual as well as compound specific differences in the deconjugation of acetylated DONs. A spearman correlation analysis showed a statistically significant relationship between deconjugation of both acetyl-DONs at 4 h and 24 h incubation. Based on the in vitro kinetic parameters and their scaling to the in vivo situation, it was concluded that for a substantial number of human individuals the deconjugation of 15-Ac-DON may not be complete upon intestinal transit.
2. Mycotoxin Metabolism by Edible Insects
Natasha Marie Evans, Suqin Shao Toxins (Basel). 2022 Mar 17;14(3):217. doi: 10.3390/toxins14030217.
Mycotoxins are a group of toxic secondary metabolites produced in the food chain by fungi through the infection of crops both before and after harvest. Mycotoxins are one of the most important food safety concerns due to their severe poisonous and carcinogenic effects on humans and animals upon ingestion. In the last decade, insects have received wide attention as a highly nutritious, efficient and sustainable source of animal-derived protein and caloric energy for feed and food purposes. Many insects have been used to convert food waste into animal feed. As food waste might contain mycotoxins, research has been conducted on the metabolism and detoxification of mycotoxins by edible insects. The mycotoxins that have been studied include aflatoxins, fumonisins, zearalenone (ZEN), vomitoxin or deoxynivalenol (DON), and ochratoxins (OTAs). Aflatoxin metabolism is proved through the production of hydroxylated metabolites by NADPH-dependent reductases and hydroxylases by different insects. ZEN can be metabolized into α- and β-zearalenol. Three DON metabolites, 3-, 15-acetyl-DON, and DON-3-glucoside, have been identified in the insect DON metabolites. Unfortunately, the resulting metabolites, involved enzymes, and detoxification mechanisms of OTAs and fumonisins within insects have yet to be identified. Previous studies have been focused on the insect tolerance to mycotoxins and the produced metabolites; further research needs to be conducted to understand the exact enzymes and pathways that are involved.
3. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review
Ehsan Feizollahi, M S Roopesh Crit Rev Food Sci Nutr. 2022;62(21):5903-5924. doi: 10.1080/10408398.2021.1895056. Epub 2021 Mar 17.
Deoxynivalenol (DON) is one of the main trichothecenes, that causes health-related issues in humans and animals and imposes considerable financial loss to the food industry each year. Numerous treatments have been reported in the literature on the degradation of DON in food products. These treatments include thermal, chemical, biological/enzymatic, irradiation, light, ultrasound, ozone, and atmospheric cold plasma treatments. Each of these methods has different degradation efficacy and degrades DON by a distinct mechanism, which leads to various degradation byproducts with different toxicity. This manuscript focuses to review the degradation of DON by the aforementioned treatments, the chemical structure and toxicity of the byproducts, and the degradation pathway of DON. Based on the type of treatment, DON can be degraded to norDONs A-F, DON lactones, and ozonolysis products or transformed into de-epoxy deoxynivalenol, DON-3-glucoside, 3-acetyl-DON, 7-acetyl-DON, 15-acetyl-DON, 3-keto-DON, or 3-epi-DON. DON is a major problem for the grain industry and the studies focusing on DON degradation mechanisms could be helpful to select the best method and overcome the DON contamination in grains.

Spectrum

Predicted LC-MS/MS Spectrum - 10V, Positive

Experimental Conditions

Ionization Mode: Positive
Collision Energy: 10 eV
Instrument Type: QTOF (generic), spectrum predicted by CFM-ID
Mass Resolution: 0.0001 Da

13C NMR Spectrum

Experimental Conditions

Solvent: D2O
Nucleus: 13C
Frequency: 100

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket