4,5-Di-O-methylhiascic acid

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

4,5-Di-O-methylhiascic acid
Category Others
Catalog number BBF-05334
CAS
Molecular Weight 512.46
Molecular Formula C26H24O11

Online Inquiry

Description

It is a tridepside isolated from the lichen Parmelia pseudofatiscens.

Specification

IUPAC Name 2-hydroxy-4-((2-hydroxy-4-((6-hydroxy-3,4-dimethoxy-2-methylbenzoyl)oxy)-6-methylbenzoyl)oxy)-6-methylbenzoic acid

Reference Reading

1. The acid tolerance responses of the Salmonella strains isolated from beef processing plants
Yunge Liu, Yimin Zhang, Lixian Zhu, Lebao Niu, Xin Luo, Pengcheng Dong Food Microbiol. 2022 Jun;104:103977. doi: 10.1016/j.fm.2022.103977. Epub 2022 Jan 7.
The development of the stationary-phase, low-pH-inducible acid tolerance response (ATR) in the Salmonella contaminant of beef during the processing arises food safety concerns, because it may evoke bacterial coping mechanisms against bactericidal insults and alter gene expression that contribute to pathogen virulence. However, information on the development of the ATR and the stability (defined as the capacity to maintain the acquired acid tolerance after induction) in the Salmonella during the production and distribution of beef is limited. After adaptation overnight, ATRs in the 79 strains of Salmonella isolated from beef processing plants were investigated by comparing the log reduction in the 2-h acid challenge trials at pH 3.0. Six representative strains were selected to further estimate the effect of three factors in the incubation period on the development of the ATR, including adapted pH values (5.0, 5.4, 6.0, and 7.0), temperatures (10 °C and 37 °C), and the adaptation media (meat extract and brain heart infusion media). The stability of acid tolerance during the long-time chilled storage (4 °C for 13 days) was also observed on two strains of serotypes S. Derby and S. Meleagridis. All the strains isolated from beef processing plants exhibited an enhanced acid tolerance indicating the widespread existence of ATR. The results also revealed that strain variability was present in the development of ATR. Significant tolerance to lethal acidic environments (pH 3.0) was found when the Salmonella strains had been acid-adapted in meat extract at pH 5.0, pH 5.4, or pH 6.0, which indicated the possible induction of ATR during beef production. After the acid adaptations, the population reduction after the acid challenge (BHI, pH = 3) in the strains was significantly lower than the non-induced at the 1d, 7 day and 13 day's storage in meat extract media at 4 °C, which revealed the persistence of ATR during beef distribution. Compared to 37 °C, adaptation in lower temperature (10 °C) significantly reduced the ATR and no ATR was developed when adapted in 4 °C. This emphasizes the importance of keeping a low temperature of beef throughout the supply chains of beef industry.
2. Fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid: a comparative study
Karolina Pierzchała, Marlena Pięta, Monika Rola, Małgorzata Świerczyńska, Angelika Artelska, Karolina Dębowska, Radosław Podsiadły, Jakub Pięta, Jacek Zielonka, Adam Sikora, Andrzej Marcinek, Radosław Michalski Sci Rep. 2022 Jun 3;12(1):9314. doi: 10.1038/s41598-022-13317-8.
MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors' potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M-1s-1 for coumarin boronic acid (CBA), 1.1 × 104 M-1s-1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M-1s-1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M-1s-1 for 3'-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M-1s-1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.
3. Thermal properties and pyrolysis kinetics of phosphate-rock acid-insoluble residues
Rui Li, Weilong He, Jiangfei Duan, Shengxia Feng, Yu Zhang Waste Manag. 2022 Jun 1;146:77-85. doi: 10.1016/j.wasman.2022.04.039. Epub 2022 May 12.
In the phosphorous-sulphur two-step process for the clean production of phosphoric acid, a phosphate-rock acid-insoluble residue (PAIR) is a solid filter residue obtained via the phosphoric acid acidolysis of phosphate rock (PR). PAIR combined with other raw materials can be used to prepare cement, ceramics and glasses, opening a potential avenue for large-scale PAIR utilisation. However, the preparation of such materials requires high-temperatures calcination. Understanding the high-temperature thermal properties of PAIR can enable its more targeted comprehensive utilisation or disposal. In this study, the thermal properties and pyrolysis kinetics of PAIR were systematically studied using a multiple heating rate method based on thermogravimetric analysis and a kinetic model. Results showed that from room temperature to 1200 °C, the main changes in the PAIR were the complete removal of fluorine and sulphur, partial removal of phosphorus and conversion of quartz to cristobalite. Moreover, during these processes, H2O(g), NH3, N2, CO2, SO2, P2O5(g), CO, CF3+ and organic gases were volatilised. Herein, the pyrolysis kinetics of PAIR is divided into five stages. Stage 1 (conversion rate ɑ: 0.05-0.2) conforms to the random nucleation and growth as well as the Avrami-Erofeev (n = 2/3) mechanism; the corresponding mechanism function is F(ɑ) = [-Ln(1 - ɑ)]2/3. Stage 2 (ɑ: 0.2-0.4) conforms to the first-order chemical reaction mechanism; the corresponding mechanism function is F(ɑ) = -Ln(1 - ɑ). Stage 3 (ɑ: 0.4-0.6) conforms to the phase boundary-controlled reaction and one-dimensional movement mechanism; the corresponding mechanism function is F(ɑ) = ɑ. Stage 4 (ɑ: 0.6-0.8) conforms to the three-dimensional diffusion process (Jander model); the corresponding mechanism function is F(ɑ) = [1 - (1 - ɑ)1/3]2. Stage 5 (ɑ: 0.6-0.95) conforms to the one-dimensional diffusion process; the corresponding mechanism function is F(ɑ) = ɑ2.

Recommended Products

BBF-03819 Spinosyn A Inquiry
BBF-01825 Loganin Inquiry
BBF-00703 Carminomycin I Inquiry
BBF-00969 Homomycin Inquiry
BBF-05734 Irofulven Inquiry
BBF-01829 Deoxynojirimycin Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket