Aerobactin

Aerobactin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Aerobactin
Category Others
Catalog number BBF-00043
CAS 26198-65-2
Molecular Weight 564.54
Molecular Formula C22H36N4O13

Online Inquiry

Description

Akrabicin is a siderophore produced by the culture of Aerobacter aerogenes, Escherichia coli and Klebsiella pneumoniae under iron deficiency.

Specification

Synonyms Ferric-aerobactin; 3,9,15,21-Tetraazatricosane-8,12,16-tricarboxylic acid, 3,12,21-trihydroxy-2,10,14,22-tetraoxo-, [S-(R*,R*)]-
Storage Store at -20°C
IUPAC Name 4-[[(1S)-5-[acetyl(hydroxy)amino]-1-carboxypentyl]amino]-2-[2-[[(1S)-5-[acetyl(hydroxy)amino]-1-carboxypentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid
Canonical SMILES CC(=O)N(CCCCC(C(=O)O)NC(=O)CC(CC(=O)NC(CCCCN(C(=O)C)O)C(=O)O)(C(=O)O)O)O
InChI InChI=1S/C22H36N4O13/c1-13(27)25(38)9-5-3-7-15(19(31)32)23-17(29)11-22(37,21(35)36)12-18(30)24-16(20(33)34)8-4-6-10-26(39)14(2)28/h15-16,37-39H,3-12H2,1-2H3,(H,23,29)(H,24,30)(H,31,32)(H,33,34)(H,35,36)/t15-,16-/m0/s1
InChI Key KDHHWXGBNUCREU-HOTGVXAUSA-N

Properties

Appearance Colorless Powder
Solubility Soluble in DMSO

Reference Reading

1. Negatively Regulated Aerobactin and Desferrioxamine E by Fur in Pantoea ananatis Are Required for Full Siderophore Production and Antibacterial Activity, but Not for Virulence
Okhee Choi, Jaeyeong Cho, Byeongsam Kang, Yeyeong Lee, Jinwoo Kim Appl Environ Microbiol. 2022 Mar 22;88(6):e0240521. doi: 10.1128/aem.02405-21. Epub 2022 Feb 2.
Pantoea ananatis is an emerging plant pathogen that causes disease in economically important crops such as rice, corn, onion, melon, and pineapple, and it also infects humans and insects. In this study, we identified biosynthetic gene clusters of aerobactin and desferrioxamine E (DFO-E) siderophores by using the complete genome of P. ananatis PA13 isolated from rice sheath rot. P. ananatis PA13 exhibited the strongest antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). Mutants of aerobactin or DFO-E maintained antibacterial activity against E. amylovora and Y. enterocolitica, as well as in a siderophore activity assay. However, double aerobactin and DFO-E gene deletion mutants completely lost siderophore and antibacterial activity. These results reveal that both siderophore biosynthetic gene clusters are essential for siderophore production and antibacterial activity in P. ananatis PA13. A ferric uptake regulator protein (Fur) mutant exhibited a significant increase in siderophore production, and a Fur-overexpressing strain completely lost antibacterial activity. Expression of the iucA, dfoJ, and foxA genes was significantly increased in the Δfur mutant background, and expression of these genes returned to wild-type levels after fur compensation. These results indicate that Fur negatively regulates aerobactin and DFO-E siderophores. However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment. This study is the first to report the regulation and functional characteristics of siderophore biosynthetic genes in P. ananatis. IMPORTANCE Pantoea ananatis is a bacterium that causes diseases in several economically important crops, as well as in insects and humans. This bacterium has been studied extensively as a potentially dangerous pathogen due to its saprophytic ability. Recently, the types, biosynthetic gene clusters, and origin of the siderophores in the Pantoea genus were determined by using genome comparative analyses. However, few genetic studies have investigated the characteristics and functions of siderophores in P. ananatis. The results of this study revealed that the production of aerobactin and desferrioxamine E in the rice pathogen P. ananatis PA13 is negatively regulated by Fur and that these siderophores are essential for antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment.
2. Effects of aerobactin-encoding gene iucB and regulator of mucoid phenotype rmpA on the virulence of Klebsiella pneumoniae causing liver abscess
Shixing Liu, Zeyu Huang, Jingchun Kong, Yining Zhao, Mengxin Xu, Beibei Zhou, Xiangkuo Zheng, Dandan Ye, Tieli Zhou, Jianming Cao, Cui Zhou Front Cell Infect Microbiol. 2022 Nov 11;12:968955. doi: 10.3389/fcimb.2022.968955. eCollection 2022.
This study aimed to analyze the influence of the main aerobactin-encoding gene iucB and the regulator of mucoid phenotype rmpA on the virulence of Klebsiella pneumoniae causing liver abscess. In addition, the possible regulatory effects of the main encoding gene iucB on the regulator of mucoid phenotype rmpA were explored, thus providing novel strategies for the prevention and control of hypervirulent K. pneumoniae (hvKp) causing liver abscess. The virulence-related genes iucB and rmpA of K. pneumoniae were detected by PCR. iucB and rmpA were cloned into K. pneumoniae strain by using plasmid pET28b as vector. Quantitative real-time PCR (RT-qPCR) was employed to detect the relative expression of rmpA gene in K. pneumoniae. We investigated the potential effects of aerobactin coding gene iucB and regulator of mucoid phenotype rmpA on the virulence of K. pneumoniae by establishing the Galleria mellonella infection model. Capsule quantitative experiment was conducted to investigate the impact of aerobactin-encoding gene iucB on the modulation of regulator of mucoid phenotype rmpA. The results of the G. mellonella infection model indicated that iucB gene could significantly enhance the virulence of K. pneumoniae, but the presence of rmpA gene did not markedly affect the virulence of K. pneumoniae. RT-qPCR showed that iucB inhibited the expression of rmpA gene. Quantitative capsulation experiments showed that the presence of rmpA gene could not increase the capsulation production of K. pneumoniae. The main encoding gene of aerobactin, namely iucB, could substantially enhance the virulence of K. pneumoniae. The gene iucB might be involved in the biosynthesis of the capsular polysaccharide through an unknown mechanism instead of the gene rmpA. Overall, these findings provide important theoretical support for the treatment of infections caused by hvKp.
3. Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae: In Silico and In Vitro Evidence
Chaitra Shankar, Soumya Basu, Binesh Lal, Sathiya Shanmugam, Karthick Vasudevan, Purva Mathur, Sudha Ramaiah, Anand Anbarasu, Balaji Veeraraghavan Front Cell Infect Microbiol. 2021 Sep 13;11:709681. doi: 10.3389/fcimb.2021.709681. eCollection 2021.
Background: The incidence of hypervirulent (hv) carbapenem-resistant (CR) Klebsiella pneumoniae (Kp) is increasing globally among various clones and is also responsible for nosocomial infections. The CR-hvKp is formed by the uptake of a virulence plasmid by endemic high-risk clones or by the uptake of plasmids carrying antimicrobial resistance genes by the virulent clones. Here, we describe CR-hvKp from India belonging to high-risk clones that have acquired a virulence plasmid and are phenotypically unidentified due to lack of hypermucoviscosity. Methods: Twenty-seven CRKp isolates were identified to possess rmpA2 by whole-genome sequencing; and resistance and virulence determinants were characterized. By in silico protein modeling (and validation), protein backbone stability analysis, and coarse dynamics study, the fitness of RmpA, RmpA2, and aerobactin-associated proteins-IucA and IutA, were determined to establish a reliable marker for clinical identification of CR-hvKp. Results: The CR-hvKp belonged to multidrug-resistant (MDR) high-risk clones such as CG11, CG43, ST15, and ST231 and carried OXA-232 as the predominant carbapenemase followed by NDM. The virulence plasmid belonged to IncHI1B replicon type and carried frameshifted and truncated rmpA and rmpA2. This resulted in a lack of hypermucoviscous phenotype. However, functional aerobactin was expressed in all high-risk clones. In silico analysis portrayed that IucA and IutA were more stable than classical RmpA. Furthermore, IucA and IutA had lower conformational fluctuations in the functional domains than the non-functional RmpA2, which increases the fitness cost of the latter for its maintenance and expression among CR-hvKp. Hence, RmpA and RmpA2 are likely to be lost among CR-hvKp owing to the increased fitness cost while coding for essential antimicrobial resistance and virulence factors. Conclusion: Increasing incidence of convergence of AMR and virulence is observed among K. pneumoniae globally, which warrants the need for reliable markers for identifying CR-hvKp. The presence of non-functional RmpA2 among high-risk clones highlights the significance of molecular identification of CR-hvKp. The negative string test due to non-functional RmpA2 among CR-hvKp isolates challenges phenotypic screening and faster identification of this pathotype. This can potentially be counteracted by projecting aerobactin as a stable, constitutively expressed, and functional marker for rapidly evolving CR-hvKp.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket