Anantin

Anantin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Anantin
Category Enzyme inhibitors
Catalog number BBF-00685
CAS 133658-45-4
Molecular Weight 1870.97
Molecular Formula C90H111N21O24
Purity 95%

Online Inquiry

Description

It is produced by the strain of Streptomyces coerulescens. It has a competitive binding to the cardiac natriuretic peptide (ANF) receptor.

Specification

Synonyms Anantin (9CI); CYCLO[GLY-PHE-ILE-GLY-TRP-GLY-ASN-BETA-ASP]-ILE-PHE-GLY-HIS-TYR-SER-GLY-ASP-PHE; GLY-PHE-ILE-GLY-TRP-GLY-ASN-ASP-ILE-PHE-GLY-HIS-TYR-SER-GLY-ASP-PHE; H-GLY-PHE-ILE-GLY-TRP-GLY-ASN-ASP-ILE-PHE-GLY-HIS-TYR-SER-GLY-ASP-PHE-OH; ANANTIN
Storage -20ºC
IUPAC Name (3S)-3-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S,3S)-2-[[(5S,8S,14S,20S,23S)-20-(2-amino-2-oxoethyl)-5-benzyl-8-[(2S)-butan-2-yl]-14-(1H-indol-3-ylmethyl)-3,6,9,12,15,18,21,25-octaoxo-1,4,7,10,13,16,19,22-octazacyclopentacosane-23-carbonyl]amino]-3-methylpentanoyl]amino]-3-phenylpropanoyl]amino]acetyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-4-[[(1S)-1-carboxy-2-phenylethyl]amino]-4-oxobutanoic acid
Canonical SMILES CCC(C)C1C(=O)NCC(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(CC(=O)NCC(=O)NC(C(=O)N1)CC2=CC=CC=C2)C(=O)NC(C(C)CC)C(=O)NC(CC3=CC=CC=C3)C(=O)NCC(=O)NC(CC4=CNC=N4)C(=O)NC(CC5=CC=C(C=C5)O)C(=O)NC(CO)C(=O)NCC(=O)NC(CC(=O)O)C(=O)NC(CC6=CC=CC=C6)C(=O)O)CC(=O)N)CC7=CNC8=CC=CC=C87
InChI InChI=1S/C90H111N21O24/c1-5-48(3)77-88(132)98-45-75(120)101-62(34-54-39-93-58-25-17-16-24-57(54)58)80(124)96-43-73(118)103-64(36-69(91)114)84(128)106-65(37-70(115)94-41-71(116)100-60(86(130)110-77)31-51-20-12-8-13-21-51)87(131)111-78(49(4)6-2)89(133)107-59(30-50-18-10-7-11-19-50)79(123)95-42-72(117)102-63(35-55-40-92-47-99-55)83(127)105-61(32-53-26-28-56(113)29-27-53)82(126)109-68(46-112)81(125)97-44-74(119)104-66(38-76(121)122)85(129)108-67(90(134)135)33-52-22-14-9-15-23-52/h7-29,39-40,47-49,59-68,77-78,93,112-113H,5-6,30-38,41-46H2,1-4H3,(H2,91,114)(H,92,99)(H,94,115)(H,95,123)(H,96,124)(H,97,125)(H,98,132)(H,100,116)(H,101,120)(H,102,117)(H,103,118)(H,104,119)(H,105,127)(H,106,128)(H,107,133)(H,108,129)(H,109,126)(H,110,130)(H,111,131)(H,121,122)(H,134,135)/t48-,49-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,77-,78-/m0/s1
InChI Key PXMKNCAIFBQHPS-WKRAVPHXSA-N

Properties

Solubility Soluble in Methanol

Reference Reading

1. Role of atrial natriuretic Peptide in oxytocin induced cardioprotection
Fariba Houshmand, Mahdieh Faghihi, Saleh Zahediasl Heart Lung Circ. 2015 Jan;24(1):86-93. doi: 10.1016/j.hlc.2014.05.023. Epub 2014 Jun 30.
Background: The purpose of this study was to determine whether endogenous atrial natriuretic peptide (ANP) contributes to the protective effect of neurohypophysial hormone oxytocin (OT) in heart preconditioning. Methods: Sprague-Dawley male rats were subjected to 25 min regional ischaemia and 120 min reperfusion and were divided into eight groups. Oxytocin or an equivalent volume of saline was administrated intraperitoneally, 30 min before ischaemia. The OT receptor antagonist (atosiban), ANP receptor antagonist (anantin) and nitric oxide synthase inhibitor (L-NAME) were injected 10 min before OT. In other groups, atosiban, anantin and L-NAME were only administered 40 min prior to ischaemia. Results: Compared with the ischaemia/reperfusion group (I/R), alterations in infarct size, biochemical parameters [LDH (lactate dehydrogenase), CK-MB (creatine kinase-MB), MDA (malondialdehyde) plasma levels] and severity of ventricular arrhythmia due to I/R injury were attenuated and VF was abolished by OT treatment. These OT effects were eliminated by OT and ANP receptor blockers and nitric oxide synthase inhibitor, but anantin did not reverse the effect of OT in lipid peroxidation. Conclusions: These findings demonstrate an important contributory role of ANP in the OT induced protection in myocardial ischaemia reperfusion. OT also reduced lipid peroxidation with a NO-dependent mechanism.
2. Brain natriuretic peptide constitutively downregulates P2X3 receptors by controlling their phosphorylation state and membrane localization
Anna Marchenkova, Sandra Vilotti, Elsa Fabbretti, Andrea Nistri Mol Pain. 2015 Nov 14;11:71. doi: 10.1186/s12990-015-0074-6.
Background: ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear. Results: To clarify this process in mouse TG cultures, we suppressed NPR-A signaling with either siRNA of the endogenous agonist BNP, or the NPR-A blocker anantin. Thus, we investigated changes in P2X3 receptor distribution in the lipid raft membrane compartment, their phosphorylation state, as well as their function with patch clamping. Delayed onset of P2X3 desensitization was one mechanism for the anantin-induced enhancement of P2X3 activity. Anantin application caused preferential P2X3 receptor redistribution to the lipid raft compartment and decreased P2X3 serine phosphorylation, two phenomena that were not interdependent. An inhibitor of cGMP-dependent protein kinase and siRNA-mediated knockdown of BNP mimicked the effect of anantin. Conclusions: We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain.
3. Inefficient constitutive inhibition of P2X3 receptors by brain natriuretic peptide system contributes to sensitization of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine
Anna Marchenkova, Sandra Vilotti, Niels Ntamati, Arn Mjm van den Maagdenberg, Andrea Nistri Mol Pain. 2016 May 12;12:1744806916646110. doi: 10.1177/1744806916646110. Print 2016.
Background: On trigeminal ganglion neurons, pain-sensing P2X3 receptors are constitutively inhibited by brain natriuretic peptide via its natriuretic peptide receptor-A. This inhibition is associated with increased P2X3 serine phosphorylation and receptor redistribution to non-lipid raft membrane compartments. The natriuretic peptide receptor-A antagonist anantin reverses these effects. We studied whether P2X3 inhibition is dysfunctional in a genetic familial hemiplegic migraine type-1 model produced by introduction of the human pathogenic R192Q missense mutation into the mouse CACNA1A gene (knock-in phenotype). This model faithfully replicates several properties of familial hemiplegic migraine type-1, with gain-of-function of CaV2.1 Ca(2+) channels, raised levels of the algogenic peptide calcitonin gene-related peptide, and enhanced activity of P2X3 receptors in trigeminal ganglia. Results: In knock-in neurons, anantin did not affect P2X3 receptor activity, membrane distribution, or serine phosphorylation level, implying ineffective inhibition by the constitutive brain natriuretic peptide/natriuretic peptide receptor-A pathway. However, expression and functional properties of this pathway remained intact together with its ability to downregulate TRPV1 channels. Reversing the familial hemiplegic migraine type-1 phenotype with the CaV2.1-specific antagonist, ω-agatoxin IVA restored P2X3 activity to wild-type level and enabled the potentiating effects of anantin again. After blocking calcitonin gene-related peptide receptors, P2X3 receptors exhibited wild-type properties and were again potentiated by anantin. Conclusions: P2X3 receptors on mouse trigeminal ganglion neurons are subjected to contrasting modulation by inhibitory brain natriuretic peptide and facilitatory calcitonin gene-related peptide that both operate via complex intracellular signaling. In the familial hemiplegic migraine type-1 migraine model, the action of calcitonin gene-related peptide appears to prevail over brain natriuretic peptide, thus suggesting that peripheral inhibition of P2X3 receptors becomes insufficient and contributes to trigeminal pain sensitization.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket