Ansamitocin P 3'

Ansamitocin P 3'

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Ansamitocin P 3'
Category Antibiotics
Catalog number BBF-04267
CAS 66547-09-9
Molecular Weight 635.14
Molecular Formula C32H43ClN2O9
Purity >98%

Ordering Information

Catalog Number Size Price Stock Quantity
BBF-04267 25 mg $285 In stock

Online Inquiry

Add to cart

Description

Ansamitocin P 3' is an isomer of Ansamitocin P-3, a potent anti-tumor maytansinoid antibiotic found in Actinosynnema pretiosum, a maytansine analog which displays potent cytotoxicity against the human solid tumor cell lines A-549 and HT-29.

Specification

Related CAS 66584-72-3 (with i-propyl group instead of n-propyl)
Synonyms Ansamitocin P3'; AP-3'; Ansamitocin P-3'; Maytansinol butyrate, Maytansinoid AP-3'. Antibiotic C 15003P3'; iso-Ansamitocin P-3
Shelf Life ≥360 days if stored properly
Storage Store at 2-8°C
IUPAC Name (14S,16S,32S,33S,2R,4S,10E,12E,14R)-86-chloro-14-hydroxy-85,14-dimethoxy-33,2,7,10-tetramethyl-12,6-dioxo-7-aza-1(6,4)-oxazinana-3(2,3)-oxirana-8(1,3)-benzenacyclotetradecaphane-10,12-dien-4-yl butyrate
Canonical SMILES CCCC(=O)OC1CC(=O)N(C2=C(C(=CC(=C2)CC(=CC=CC(C3(CC(C(C4C1(O4)C)C)OC(=O)N3)O)OC)C)OC)Cl)C
InChI InChI=1S/C32H43ClN2O9/c1-8-10-27(37)43-25-16-26(36)35(5)21-14-20(15-22(40-6)28(21)33)13-18(2)11-9-12-24(41-7)32(39)17-23(42-30(38)34-32)19(3)29-31(25,4)44-29/h9,11-12,14-15,19,23-25,29,39H,8,10,13,16-17H2,1-7H3,(H,34,38)/b12-9+,18-11+/t19-,23+,24-,25+,29+,31+,32+/m1/s1
InChI Key WLKHTIAFMSHJLG-BYXOJEECSA-N
Source Actinosynnema pretoisum

Properties

Appearance White to Off-white Crystalline Solid
Application ADCs Cytotoxin
Antibiotic Activity Spectrum Neoplastics (Tumor)
Boiling Point 837.6±65.0°C (Predicted)
Melting Point 182-185°C
Flash Point 457.7±34.3 °C
Density 1.30±0.1 g/cm3 at 20°C 760 Torr
Solubility Soluble in ethanol (1 mg/ml), methanol (10 mg/ml), DMF (20 mg/ml)
LogP 5.09

Reference Reading

1.Process optimization with alternative carbon sources and modulation of secondary metabolism for enhanced ansamitocin P-3 production in Actinosynnema pretiosum.
Fan Y, Gao Y, Zhou J, Wei L, Chen J, Hua Q. J Biotechnol. 2014 Dec 20;192 Pt A:1-10.
Ansamitocin P-3 (AP-3), synthesized by Actinosynnema pretiosum, is a microtubule disruptor with significant antitumor activity. Although efforts have been made for the study of ansamitocin biosynthetic gene clusters and its fermentation improvement, the yield and productivity of AP-3 are still limited. In this study, fructose was found to be more beneficial to AP-3 production than glucose, and the culture condition was optimized via single-factor experiments and response surface method. The AP-3 concentration in the Erlenmeyer flasks reached 144 mg/L with the optimized medium containing fructose 9.36 g/L, glycerol 26.79 g/L and soluble starch 3.03 g/L, increased by ninefold compared with that before optimization. The result of medium optimization showed that fructose was an important element for effective increase in AP-3 production. Transcription of genes involved in primary metabolism and ansamitocin biosynthetic pathway was investigated to elucidate metabolic responses of cell metabolism to the substitution of fructose for glucose.
2.Improvement of ansamitocin P-3 production by Actinosynnema mirum with fructose as the sole carbon source.
Li T1, Fan Y, Nambou K, Hu F, Imanaka T, Wei L, Hua Q. Appl Biochem Biotechnol. 2015 Mar;175(6):2845-56. doi: 10.1007/s12010-014-1445-6. Epub 2015 Jan 7.
Ansamitocin P-3 (AP-3) is an active and potent anti-tumor maytansinoid, which is usually produced by Actinosynnema spp. In this study, the effects of different carbon sources on biomass and AP-3 production by Actinosynnema mirum were investigated. The results showed great biomass production behavior of A. mirum in glucose medium comparatively to other carbon sources. Interestingly, when fructose was used as the sole carbon source, the highest yield of AP-3 was obtained, which was about fourfold than that of strain cultured in glucose after 168 h. Further analysis conducted in regard to better understanding of such observations in glucose and fructose defined media showed that fructose improves AP-3 production through the stimulation of the key genes of the secondary metabolism pathways. It was concluded that fructose could be a potential carbon source for cost-effective production of AP-3 from an industrial point of view.
3.Enhancement of ansamitocin P-3 production in Actinosynnema pretiosum by a synergistic effect of glycerol and glucose.
Gao Y1, Fan Y, Nambou K, Wei L, Liu Z, Imanaka T, Hua Q. J Ind Microbiol Biotechnol. 2014 Jan;41(1):143-52. doi: 10.1007/s10295-013-1374-3. Epub 2013 Oct 31.
Ansamitocin P-3 (AP-3), a secondary metabolite produced by Actinosynnema pretiosum, is well known for its extraordinary antitumor properties and is broadly utilized in clinical research. Through this work, we found, for the first time, that the combination of glucose and glycerol as a mixed carbon source is an appropriate approach for enhancing the production of AP-3 by A. pretiosum. The amount yielded was about threefold that obtained with glucose as the sole carbon source. In order to better understand the mechanisms that channel glycerol metabolism towards AP-3 production, the activities of some key enzymes such as glucose-6-phosphate dehydrogenase, glucose-6-phosphate isomerase, phosphoglucomutase (PGM), and fructose 1,6-bisphosphatase were assessed. The results showed that glycerol affects the production of AP-3 by increasing PGM activity. Furthermore, qRT-PCR analysis revealed that transcriptional levels of structural genes asm14 and asm24, and primary genes amir5189 and amir6327 were up-regulated in medium containing glycerol.
4.Preparation of new alkyne-modified ansamitocins by mutasynthesis.
Harmrolfs K1, Mancuso L1, Drung B1, Sasse F2, Kirschning A1. Beilstein J Org Chem. 2014 Mar 3;10:535-43. doi: 10.3762/bjoc.10.49. eCollection 2014.
The preparation of alkyne-modified ansamitocins by mutasynthetic supplementation of Actinosynnema pretiosum mutants with alkyne-substituted aminobenzoic acids is described. This modification paved the way to introduce a thiol linker by Huisgen-type cycloaddition which can principally be utilized to create tumor targeting conjugates. In bioactivity tests, only those new ansamitocin derivatives showed strong antiproliferative activity that bear an ester side chain at C-3.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket