1. Inhibition of bone resorption in cultures of mouse calvariae by apicularen A
JangJa Hong, Hirokazu Sasaki, Kazuaki Niikura, Maiko Yanai, Yasuhiro Nakano, Aya Yokomakura, Kenji Ishihara, Noriyasu Hirasawa, Young-Sook Kang, Joa Sub Oh, Jong Hwan Kwak, OkPyo Zee, Kazuo Ohuchi Planta Med. 2007 Feb;73(2):173-5. doi: 10.1055/s-2006-957069.
Apicularens A and B were isolated from the myxobacterial genus Chondromyces apiculatus JW184. Apicularen A inhibited bafilomycin A1-sensitive ATP-dependent proton transport into microsome vesicles more potently than apicularen B. Bone resorption in cultures of mouse calvariae induced by human parathyroid hormone (PTH) or interleukin-1beta (IL-1beta) was inhibited by apicularen A at 10 and 100 nM, while apicularen B had no effect. The bisphosphonate incadronate inhibited bone resorption at 100 nM, being less effective than apicularen A. Our findings indicate that apicularen A inhibits bone resorption induced by PTH or IL-1beta more potently than apicularen B, probably due to inhibition of the V-ATPase.
2. Induction of nitric oxide production by the cytostatic macrolide apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)] and possible role of nitric oxide in apicularen A-induced apoptosis in RAW 264.7 cells
JangJa Hong, Aya Yokomakura, Yasuhiro Nakano, Hyun Seung Ban, Kenji Ishihara, Jong-Woong Ahn, OkPyo Zee, Kazuo Ohuchi J Pharmacol Exp Ther. 2005 Mar;312(3):968-77. doi: 10.1124/jpet.104.077248. Epub 2004 Nov 23.
We previously reported that apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], a highly cytostatic macrolide isolated from the myxobacterial genus Chondromyces, induces apoptosis in the mouse leukemic monocyte cell line RAW 264.7. To analyze the action mechanism of apicularen A for the induction of apoptosis, effects of apicularen A on nitric oxide (NO) production in RAW 264.7 cells were examined. It was demonstrated that apicularen A at 10 and 100 nM induced nitrite production, whereas apicularen B [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-7-[[2-(acetylamino)-2-deoxy-beta-d-glucopyranosyl]oxy]-3,4,5,6,7,8,9,10-octahydro-14-hydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)], an N-acetyl-glucosamine glycoside of apicularen A, had no effect at 100 nM. The apicularen A-induced nitrite production was accompanied by an increase in the level of inducible nitric-oxide synthase (iNOS) and its mRNA and was suppressed by the NOS inhibitor N(G)-monomethyl-l-arginine acetate (l-NMMA). In addition, apicularen A activated nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) and decreased the level of IkappaB-alpha and increased that of phosphorylated c-Jun N-terminal kinase (JNK). Furthermore, the apicularen A-induced nitrite production was suppressed by the NF-kappaB inhibitor Bay 11-7082 [(E)-3-(4-methylphenylsulfonyl)-2-propenenitrile] and the JNK inhibitor SP600125 [anthra[1,9-cd]pyrazol-6(2H)-one]. These findings suggested that apicularen A activates NF-kappaB and AP-1, thus triggering the expression of iNOS mRNA and iNOS protein and induces NO production. Finally, apicularen A decreased cell growth and survival and cell viability and disrupted the mitochondrial membrane potential. The addition of l-NMMA partially recovered the apicularen A-induced decrease in cell growth and survival and cell viability and the disruption of mitochondrial membrane potential. These findings suggested that NO produced by apicularen A treatment participate partially in the apicularen A-induced apoptosis in RAW 264.7 cells.
3. Inhibition of vacuolar-type (H+)-ATPase by the cytostatic macrolide apicularen A and its role in apicularen A-induced apoptosis in RAW 264.7 cells
JangJa Hong, Aya Yokomakura, Yasuhiro Nakano, Kenji Ishihara, Makoto Kaneda, Mitsue Onodera, Ken-ichi Nakahama, Ikuo Morita, Kazuaki Niikura, Jong-Woong Ahn, OkPyo Zee, Kazuo Ohuchi FEBS Lett. 2006 May 15;580(11):2723-30. doi: 10.1016/j.febslet.2006.04.031. Epub 2006 Apr 21.
Apicularen A and the known vacuolar-type (H(+))-ATPase (V-ATPase) inhibitor bafilomycin A(1) induced apoptosis of RAW 264.7 cells, while apicularen B, an N-acetyl-glucosamine glycoside of apicularen A, was far less effective. Apicularen A inhibited vital staining with acridine orange of the intracellular organelles of RAW 264.7 cells, inhibited the ATP-dependent proton transport into inside-out microsome vesicles, and inhibited the bafilomycin A(1)-sensitive ATP hydrolysis. The IC(50) values of the proton transport were 0.58 nM for apicularen A, 13 nM for apicularen B, and 0.95 nM for bafilomycin A(1). Furthermore, apicularen A inhibited the bafilomycin A(1)-sensitive ATP hydrolysis more potently than apicularen B. F-ATPase and P-ATPase were not inhibited by apicularen A. We concluded that apicularen A inhibits V-ATPase, and thus induces apoptosis in RAW 264.7 cells.