Aspartyl-arginine

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Aspartyl-arginine
Category Others
Catalog number BBF-05106
CAS
Molecular Weight 289.29
Molecular Formula C10H19N5O5

Online Inquiry

Specification

Synonyms Aspartate Arginine dipeptide
Sequence H-DL-Asp-DL-Arg-OH
IUPAC Name 2-[(2-amino-3-carboxypropanoyl)amino]-5-(diaminomethylideneamino)pentanoic acid
Canonical SMILES C(CC(C(=O)O)NC(=O)C(CC(=O)O)N)CN=C(N)N
InChI InChI=1S/C10H19N5O5/c11-5(4-7(16)17)8(18)15-6(9(19)20)2-1-3-14-10(12)13/h5-6H,1-4,11H2,(H,15,18)(H,16,17)(H,19,20)(H4,12,13,14)
InChI Key PSZNHSNIGMJYOZ-UHFFFAOYSA-N

Properties

Density 1.6±0.1 g/cm3

Reference Reading

1. Catabolic pathway of arginine in Anabaena involves a novel bifunctional enzyme that produces proline from arginine
Mireia Burnat, Silvia Picossi, Ana Valladares, Antonia Herrero, Enrique Flores Mol Microbiol. 2019 Apr;111(4):883-897. doi: 10.1111/mmi.14203. Epub 2019 Feb 25.
Arginine participates widely in metabolic processes. The heterocyst-forming cyanobacterium Anabaena catabolizes arginine to produce proline and glutamate, with concomitant release of ammonium, as major products. Analysis of mutant Anabaena strains showed that this catabolic pathway is the product of two genes, agrE (alr4995) and putA (alr0540). The predicted PutA protein is a conventional, bifunctional proline oxidase that produces glutamate from proline. In contrast, AgrE is a hitherto unrecognized enzyme that contains both an N-terminal α/β propeller domain and a unique C-terminal domain of previously unidentified function. In vitro analysis of the proteins expressed in Escherichia coli or Anabaena showed arginine dihydrolase activity of the N-terminal domain and ornithine cyclodeaminase activity of the C-terminal domain, overall producing proline from arginine. In the diazotrophic filaments of Anabaena, β-aspartyl-arginine dipeptide is transferred from the heterocysts to the vegetative cells, where it is cleaved producing aspartate and arginine. Both agrE and putA were found to be expressed at higher levels in vegetative cells than in heterocysts, implying that arginine is catabolized by the AgrE-PutA pathway mainly in the vegetative cells. Expression in Anabaena of a homolog of the C-terminal domain of AgrE obtained from Methanococcus maripaludis enabled us to identify an archaeal ornithine cyclodeaminase.
2. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium
Mireia Burnat, Antonia Herrero, Enrique Flores Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3823-8. doi: 10.1073/pnas.1318564111. Epub 2014 Feb 18.
Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases β-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and β-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of β-aspartyl-arginine. These observations imply that β-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule β-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria.
3. CphA2 is a novel type of cyanophycin synthetase in N2-fixing cyanobacteria
Friederike Klemke, Dennis J Nürnberg, Karl Ziegler, Gabriele Beyer, Uwe Kahmann, Wolfgang Lockau, Thomas Volkmer Microbiology (Reading). 2016 Mar;162(3):526-536. doi: 10.1099/mic.0.000241. Epub 2016 Jan 18.
Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1. Here, we analysed CphA2 from Anabaena variabilis ATCC 29413 and Cyanothece sp. PCC 7425. We found that CphA2 polymerized the dipeptide β-aspartyl-arginine to form cyanophycin. Thus, CphA2 represents a novel type of cyanophycin synthetase. A cphA2 disruption mutant of A. variabilis was generated. Growth of this mutant was impaired under high-light conditions and nitrogen deprivation, suggesting that CphA2 plays an important role in nitrogen metabolism under N2-fixing conditions. Electron micrographs revealed that the mutant had fewer cyanophycin granules, but no alteration in the distribution of granules in its cells was observed. Localization of CphA2 by immunogold electron microscopy demonstrated that the enzyme is attached to cyanophycin granules. Expression of CphA1 and CphA2 was examined in Anabaena WT and cphA mutant cells. Whilst the CphA1 level increased upon nitrogen deprivation, the CphA2 level remained nearly constant.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket