Aspergin

Aspergin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-00111
CAS 40434-07-9
Molecular Weight 302.41
Molecular Formula C19H26O3

Online Inquiry

Description

Aspergin is an antibiotic produced by Aspergillus sp., with activity against gram-positive bacteria.

Specification

IUPAC Name 2-[(E)-hept-1-enyl]-3,6-dihydroxy-5-(3-methylbut-2-enyl)benzaldehyde
Canonical SMILES CCCCCC=CC1=C(C=C(C(=C1C=O)O)CC=C(C)C)O
InChI InChI=1S/C19H26O3/c1-4-5-6-7-8-9-16-17(13-20)19(22)15(12-18(16)21)11-10-14(2)3/h8-10,12-13,21-22H,4-7,11H2,1-3H3/b9-8+
InChI Key FYGPFTSGVSZKAJ-CMDGGOBGSA-N

Properties

Appearance Yellow Powder
Antibiotic Activity Spectrum Gram-positive bacteria

Reference Reading

1. Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea
Xiaoxiao Guo, Fusheng Chen, Jiao Liu, Yanchun Shao, Xiaohong Wang, Youxiang Zhou J Fungi (Basel). 2022 Feb 16;8(2):193. doi: 10.3390/jof8020193.
Eurotium cristatum as the dominant fungi species of Fuzhuan brick tea in China, can produce multitudinous secondary metabolites (SMs) with various bioactivities. Polyketides are a very important class of SMs found in E. cristatum and have gained extensive attention in recent years due to their remarkable diversity of structures and multiple functions. Therefore, it is necessary to explore the polyketides produced by E. cristatum at the genomic level to enhance its application value. In this paper, 12 polyketide synthase (PKS) genes were found in the whole genome of E. cristatum E1 isolated from Fuzhuan brick tea. In addition, the qRT-PCR results further demonstrated that these genes were expressed. Moreover, metabolic analysis demonstrated E. cristatum E1 can produce a variety of polyketides, including citreorosein, emodin, physcion, isoaspergin, dihydroauroglaucin, iso-dihydroauroglaucin, aspergin, flavoglaucin and auroglaucin. Furthermore, based on genomic analysis, the putative secondary metabolites clusters for emodin and flavoglaucin were proposed. The results reported here will lay a good basis for systematically mining SMs resources of E. cristatum and broadening its application fields.
2. Purification and Chemical Characterization of a Potent Acaricide and a Closely Related Inactive Metabolite Produced by Eurotium rubrum C47
José F Ortiz-Lemus, Sonia Campoy, Librada M Cañedo, Paloma Liras, Juan F Martín Antibiotics (Basel). 2020 Dec 9;9(12):881. doi: 10.3390/antibiotics9120881.
Mites are arthropods and some of them infest dry meat cured products and produce allergic reactions. Some mites, such as Tyrolichus casei, Tyrophagus putrescentiae, or Tyrophagus longior feed on filamentous fungi that grow during the meat curing process. Removal of mite infestation of meat products is extremely difficult and there are no adequate miticidal compounds. The filamentous fungus Eurotium rubrum growing on the surface of ham is able to exert a biocontrol of the population of mites due to the production of miticidal compound(s). We have purified two compounds by silica gel chromatography, gel filtration, semipreparative and analytical HPLC and determined their miticidal activity against T. casei using a mite feeding assay. Mass spectrometry and NMR analysis showed that these two compounds are prenylated salicilyl aldehydes with a C-7 alkyl chain differing in a double bond in the C-7 alkyl chain. Structures correspond to those of flavoglaucin and aspergin. Pure flavoglaucin has a miticidal activity resulting in more than 90% mite mortality whereas aspergin does not affect the mites. Both compounds were formed simultaneously by E. rubrum C47 cultures in different media suggesting that they are synthesized by the same pathway. Production of both compounds was higher in solid culture media and the products were associated with abundant formation of cleistothecia. In liquid cultures both compounds remained mainly cell-associated and only about 10% of the total compounds was released to the culture broth. This miticidal compound may be used to combat efficiently mite infestation in different habitats. These results, will promote further advances on the utilization of flavoglaucin in food preservation and in human health since this compound has antitumor activity.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket