Avermectin B1a

Avermectin B1a

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Avermectin B1a
Category Antibiotics
Catalog number BBF-00614
CAS 65195-55-3
Molecular Weight 873.08
Molecular Formula C48H72O14
Purity >98%

Online Inquiry

Description

It is produced by the strain of Streptomyces avermitilis. Avermectin B1a is an antiparasitic agent that paralyzes nematodes without causing hypercontraction or flaccid paralysis. It is a macrocyclic lactone that makes up a large component of the anthelimintic Abamectin used to control parasitic nematodes in livestock. It also acts as an insecticide and acaricide.

Specification

Synonyms Abamectin B1a
Storage -20°C
IUPAC Name (1'R,2R,3S,4'S,6S,8'R,10'E,12'S,13'S,14'E,16'E,20'R,21'R,24'S)-2-[(2S)-butan-2-yl]-21',24'-dihydroxy-12'-[(2R,4S,5S,6S)-5-[(2S,4S,5S,6S)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-3,11',13',22'-tetramethylspiro[2,3-dihydropyran-6,6'-3,7,19-trioxatetracyclo[15.6.1.14,8.020,24]pentacosa-10,14,16,22-tetraene]-2'-one
Canonical SMILES CCC(C)C1C(C=CC2(O1)CC3CC(O2)CC=C(C(C(C=CC=C4COC5C4(C(C=C(C5O)C)C(=O)O3)O)C)OC6CC(C(C(O6)C)OC7CC(C(C(O7)C)O)OC)OC)C)C
InChI InChI=1S/C48H72O14/c1-11-25(2)43-28(5)17-18-47(62-43)23-34-20-33(61-47)16-15-27(4)42(26(3)13-12-14-32-24-55-45-40(49)29(6)19-35(46(51)58-34)48(32,45)52)59-39-22-37(54-10)44(31(8)57-39)60-38-21-36(53-9)41(50)30(7)56-38/h12-15,17-19,25-26,28,30-31,33-45,49-50,52H,11,16,20-24H2,1-10H3/b13-12+,27-15+,32-14+/t25-,26-,28-,30-,31-,33+,34-,35-,36-,37-,38-,39-,40+,41-,42-,43+,44-,45+,47+,48+/m0/s1
InChI Key RRZXIRBKKLTSOM-XPNPUAGNSA-N
Source Streptomyces avermitilis

Properties

Appearance White Powder
Application Active ingredient in some commercial ant bait traps.
Antibiotic Activity Spectrum parasites
Melting Point 203-205 °C
Solubility Soluble in ethanol, methanol, DMF or DMSO. Poor water solubility.

Toxicity

Carcinogenicity Not listed by IARC.
Mechanism Of Toxicity It has low solubility in water and extensive non-specific binding. It opens GABA-insensitive chloride channels, reducing membrane resistance and increasing conductance inward.

Reference Reading

1.Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis.
Zhuo Y1, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye BC, Zhang Q, Zhang S, Zhang LX. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11250-4. doi: 10.1073/pnas.1006085107. Epub 2010 Jun 7.
Avermectin and its analogues are produced by the actinomycete Streptomyces avermitilis and are widely used in the field of animal health, agriculture, and human health. Here we have adopted a practical approach to successfully improve avermectin production in an industrial overproducer. Transcriptional levels of the wild-type strain and industrial overproducer in production cultures were monitored using microarray analysis. The avermectin biosynthetic genes, especially the pathway-specific regulatory gene, aveR, were up-regulated in the high-producing strain. The upstream promoter region of aveR was predicted and proved to be directly recognized by sigma(hrdB) in vitro. A mutant library of hrdB gene was constructed by error-prone PCR and selected by high-throughput screening. As a result of evolved hrdB expressed in the modified avermectin high-producing strain, 6.38 g/L of avermectin B1a was produced with over 50% yield improvement, in which the transcription level of aveR was significantly increased.
2.Screening for microbial metabolites affecting phenotype of Caenorhabditis elegans.
Yamamuro D1, Uchida R, Takahashi Y, Masuma R, Tomoda H. Biol Pharm Bull. 2011;34(10):1619-23.
Microbial samples, including our library of known microbial compounds (ca. 300) and microbial culture broths (ca. 9000), were screened for small molecules affecting the phenotype of Caenorhabditis elegans. As a result, seven known compounds were found to induce phenotypic abnormality of C. elegans. Staurosporine exhibited morphological defects in the vulva and tail of C. elegans, avermectin B1a exhibited hatching inhibition of starting eggs on day 1 at 25-100 µM and growth inhibition at 0.01-12.5 µM, siccanin and antimycin A inhibited the growth of C. elegans, and fluorouracil inhibited hatching of eggs newly spawned by adult C. elegans. Toromycin induced morphological defects in the intestine. 5-(4-Methoxyphenyl)-oxazole, isolated as a fungal metabolite for the first time, inhibited the hatching of eggs newly spawned by adult C. elegans.
3.Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain.
Wang JB1, Zhang F, Pu JY, Zhao J, Zhao QF, Tang GL. Biotechnol Lett. 2014 Apr;36(4):813-9. doi: 10.1007/s10529-013-1416-y. Epub 2013 Dec 10.
Many γ-butyrolactone-autoregulator receptors control the production of secondary metabolites in Streptomyces spp. Hence, AvaR1, an autoregulator receptor protein in Streptomyces avermitilis, was characterized as a negative regulator of avermectin (Ave) production. Deletion of AvaR1 in a high-producing strain increased production of Ave B1a approx. 1.75 times (~700 μg/ml) compared with the parent strain. Semi-quantitative RT-PCR and electrophoretic mobility shift assays revealed that AvaR1 regulates the biosynthesis of Ave but not through the aveR pathway-specific regulatory gene. A special signaling molecule, avenolide, increased production of Ave. This study has refined our understanding of how avenolide regulates the production of Aves which is promising for developing new methods to improve the production of antibiotics in industrial strains.
4.Quantitative determination and validation of avermectin B1a in commercial products using quantitative nuclear magnetic resonance spectroscopy.
Hou Z1, Liang X, Du L, Su F, Su W. Magn Reson Chem. 2014 Sep;52(9):480-5. doi: 10.1002/mrc.4098. Epub 2014 Jun 18.
Nuclear magnetic resonance is defined as a quantitative spectroscopic tool that enables a precise determination of the number of substances in liquids as well as in solids. There is few report demonstrating the application of NMR in the quantification of avermectin B1a (AVB1a ); here, a proton nuclear magnetic resonance spectroscopy ((1) H NMR) using benzene [1-methoxy-4-(2-nitroethyl) (PMN)] as an internal standard and deuterochloroform as an NMR solvent was tested for the quantitative determination of AVB1a . The integrated signal of AVB1a at 5.56 ppm and the signal of PMN at 8.14 ppm in the (1) H NMR spectrum were used for quantification purposes. Parameters of specificity, linearity, accuracy, precision, intermediate precision, range, limit of detection (LOD), limit of quantification (LOQ), stability and robustness were validated. The established method was accurate and precise with good recovery (98.86%) and relative standard deviation (RSD) of assay (0.

Spectrum

Predicted LC-MS/MS Spectrum - 10V, Negative

Experimental Conditions

Ionization Mode: Negative
Collision Energy: 10 eV
Instrument Type: QTOF (generic), spectrum predicted by CFM-ID
Mass Resolution: 0.0001 Da

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket