Bacteriochlorophylls b

Bacteriochlorophylls b

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-00256
CAS
Molecular Weight 909.49
Molecular Formula C55H72MgN4O6

Online Inquiry

Description

Bacteriochlorophylls b is produced by the strain of Chlorobiea and Rhodospirillinea. It has a structural skeleton similar to chlorophyll of higher plants.

Properties

Appearance Light Green to Blue-Green Powder

Reference Reading

1. High Yield of B-Side Electron Transfer at 77 K in the Photosynthetic Reaction Center Protein from Rhodobacter sphaeroides
Nikki Cecil M Magdaong, Kaitlyn M Faries, James C Buhrmaster, Gregory A Tira, Ryan M Wyllie, Claire E Kohout, Deborah K Hanson, Philip D Laible, Dewey Holten, Christine Kirmaier J Phys Chem B. 2022 Nov 10;126(44):8940-8956. doi: 10.1021/acs.jpcb.2c05905. Epub 2022 Oct 31.
The primary electron transfer (ET) processes at 295 and 77 K are compared for the Rhodobacter sphaeroides reaction center (RC) pigment-protein complex from 13 mutants including a wild-type control. The engineered RCs bear mutations in the L and M polypeptides that largely inhibit ET from the excited state P* of the primary electron donor (P, a bacteriochlorophyll dimer) to the normally photoactive A-side cofactors and enhance ET to the C2-symmetry related, and normally photoinactive, B-side cofactors. P* decay is multiexponential at both temperatures and modeled as arising from subpopulations that differ in contributions of two-step ET (e.g., P* → P+BB- → P+HB-), one-step superexchange ET (e.g., P* → P+HB-), and P* → ground state. [HB and BB are monomeric bacteriopheophytin and bacteriochlorophyll, respectively.] The relative abundances of the subpopulations and the inherent rate constants of the P* decay routes vary with temperature. Regardless, ET to produce P+HB- is generally faster at 77 K than at 295 K by about a factor of 2. A key finding is that the yield of P+HB-, which ranges from ~5% to ~90% among the mutant RCs, is essentially the same at 77 K as at 295 K in each case. Overall, the results show that ET from P* to the B-side cofactors in these mutants does not require thermal activation and involves combinations of ET mechanisms analogous to those operative on the A side in the native RC.
2. Characterization of regioisomeric diterpenoid tails in bacteriochlorophylls produced by geranylgeranyl reductase from Halorhodospira halochloris and Blastochloris viridis
Mitsuaki Hirose, Yusuke Tsukatani, Jiro Harada, Hitoshi Tamiaki Photosynth Res. 2022 Oct;154(1):1-12. doi: 10.1007/s11120-022-00938-3. Epub 2022 Jul 19.
Geranylgeranyl reductase (GGR) encoded by the bchP gene catalyzes the reductions of three unsaturated C = C double bonds (C6 = C7, C10 = C11, and C14 = C15) in a geranylgeranyl (GG) group of the esterifying moiety in 17-propionate residue of bacteriochlorophyll (BChl) molecules. It was recently reported that GGR in Halorhodospira halochloris potentially catalyzes two hydrogenations, yielding BChl with a tetrahydrogeranylgeranyl (THGG) tail. Furthermore, its engineered GGR, in which N-terminal insertion peptides characteristic for H. halochloris were deleted, performed single hydrogenation, producing BChl with a dihydrogeranylgeranyl (DHGG) tail. In some of these enzymatic reactions, it remained unclear in which order the C = C double bond in a GG group was first reduced. In this study, we demonstrated that the (variant) GGR from H. halochloris catalyzed an initial reduction of the C6 = C7 double bond to yield a 6,7-DHGG tail. The intact GGR of H. halochloris catalyzed the further hydrogenation of the C14 = C15 double bonds to give a 6,7,14,15-THGG group, whereas deleting the characteristic peptide region from the GGR suppressed the C14 = C15 reduction. We also verified that in a model bacterium, Blastochloris viridis producing standard BChl-b, the reduction of a GG to phytyl group occurred via 10,11-DHGG and 6,7,10,11-THGG. The high-performance liquid chromatographic elution profiles of BChls-a/b employed in this study are essential for identifying the regioisomeric diterpenoid tails in the BChls of phototrophic bacteria distributed in nature and elucidating GGR enzymatic reactions.
3. Excited states of chlorophyll a and b in solution by time-dependent density functional theory
Zhe Zhu, Masahiro Higashi, Shinji Saito J Chem Phys. 2022 Mar 28;156(12):124111. doi: 10.1063/5.0083395.
The ground state and excited state electronic properties of chlorophyll (Chl) a and Chl b in diethyl ether, acetone, and ethanol solutions are investigated using quantum mechanical and molecular mechanical calculations with density functional theory (DFT) and time-dependent DFT (TDDFT). Although the DFT/TDDFT methods are widely used, the electronic structures of molecules, especially large molecules, calculated with these methods are known to be strongly dependent on the functionals and the parameters used in the functionals. Here, we optimize the range-separated parameter, μ, of the CAM-B3LYP functional of Chl a and Chl b to reproduce the experimental excitation energy differences of these Chl molecules in solution. The optimal values of μ for Chl a and Chl b are smaller than the default value of μ and that for bacteriochlorophyll a, indicating the change in the electronic distribution, i.e., an increase in electron delocalization, within the molecule. We find that the electronic distribution of Chl b with an extra formyl group is different from that of Chl a. We also find that the polarity of the solution and hydrogen bond cause the decrease in the excitation energies and the increase in the widths of excitation energy distributions of Chl a and Chl b. The present results are expected to be useful for understanding the electronic properties of each pigment molecule in a local heterogeneous environment, which will play an important role in the excitation energy transfer in light-harvesting complex II.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket