Brevetoxin A

Brevetoxin A

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Brevetoxin A
Category Mycotoxins
Catalog number BBF-00588
CAS 98112-41-5
Molecular Weight 867.06
Molecular Formula C49H70O13
Purity 98%

Online Inquiry

Description

Brevetoxin A is a polyacyl toxoid produced by Ptychodiscus brevis (Gymnodiniuin bervis). It has a strong effect of activating cell membrane sodium channels, and Tetrodotoxin can counteract its activity.

Specification

Synonyms Brevetoxin PbTx 1; Ptychodiscus brevis toxin 1
Storage Brevetoxins are unusually stable materials in the dry state under vacuum.
IUPAC Name 2-[[(1S,3R,4S,6S,8R,10R,12S,16R,18S,20R,22S,24Z,27R,29S,33R,35S,37R,39R,41S,42S,44R,46S,48R,49Z)-41-hydroxy-4,8,10,46-tetramethyl-14-oxo-2,7,13,17,21,28,34,38,43,47-decaoxadecacyclo[25.24.0.03,22.06,20.08,18.012,16.029,48.033,46.035,44.037,42]henpentaconta-24,49-dien-39-yl]methyl]prop-2-enal
Canonical SMILES CC1CC2C(CC(=O)O2)OC3CC4C(CC(C5C(O4)CC=CCC6C(O5)CC=CC7C(O6)CCCC8C(O7)(CC9C(O8)CC2C(O9)C(CC(O2)CC(=C)C=O)O)C)C)OC3(C1)C
InChI InChI=1S/C49H70O13/c1-26-17-36-39(22-45(52)58-36)57-44-21-38-40(62-48(44,4)23-26)18-28(3)46-35(55-38)11-7-6-10-31-32(59-46)12-8-14-34-33(54-31)13-9-15-43-49(5,61-34)24-42-37(56-43)20-41-47(60-42)30(51)19-29(53-41)16-27(2)25-50/h6-8,14,25-26,28-44,46-47,51H,2,9-13,15-24H2,1,3-5H3/b7-6-,14-8-/t26-,28+,29-,30+,31-,32+,33+,34-,35+,36+,37+,38-,39-,40+,41-,42-,43-,44+,46-,47+,48-,49+/m1/s1
InChI Key MGVIMUPHKPHTKF-HQUFVKSZSA-N
Source Brevetoxins are cyclic polyether compounds produced naturally by a species of dinoflagellates (Karenia brevis).

Properties

Appearance Solid powder
Application ADCs Cytotoxin
Melting Point 197-199°C
Solubility acetone, ethyl acetate, methanol (decomp.), ethanol (decomp.), water.

Toxicity

Carcinogenicity No indication of carcinogenicity to humans (not listed by IARC).
Mechanism Of Toxicity Brevetoxins are neurotoxins that bind to voltage-gated sodium channels in nerve cells, leading to disruption of normal neurological processes.

Reference Reading

1.Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1.
Tian L1, Wang M, Li X, Lam PK, Wang M, Wang D, Chou HN, Li Y, Chan LL. Aquat Toxicol. 2011 Aug;104(3-4):211-7. doi: 10.1016/j.aquatox.2011.04.019. Epub 2011 May 6.
Although brevetoxins (PbTxs) produced by the marine dinoflagellate Karenia brevis are known to be absorbed across gill membranes and exert their acute toxic effects through an ion-channel mediated pathway in neural tissue, the exact biochemical mechanism concerning PbTxs neurotoxicity in neural tissue and gas-exchange organs has not been well elucidated. In this study, we calculated the LC(50) value of PbTx-1 using the medaka fish model, and presented the molecular responses of sub-acute exposure to PbTx-1 with proteomic method. By adopting two-dimensional electrophoresis, the abundances of 14 and 24 proteins were found to be remarkably altered in the gills and brains, respectively, in response to toxin exposure. Thirteen gill and twenty brain proteins were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis. These proteins could be categorized into diverse functional classes such as cell structure, macromolecule metabolism, signal transduction and neurotransmitter release.
2.Characterization of polar brevetoxin derivatives isolated from Karenia brevis cultures and natural blooms.
Abraham A1, Plakas SM, Wang Z, Jester EL, El Said KR, Granade HR, Henry MS, Blum PC, Pierce RH, Dickey RW. Toxicon. 2006 Jul;48(1):104-15. Epub 2006 May 6.
Several novel brevetoxin derivatives were isolated and identified in Karenia brevis cultures and natural blooms by using solid phase extraction (SPE) and LC/MS(MS) techniques. These analogs were more polar compared with previously described brevetoxins, and were poorly extractable by conventional non-polar solvent (chloroform) partitioning. Brevetoxin analogs were structurally confirmed as hydrolyzed (open A-ring) forms of brevetoxins PbTx-1, PbTx-7, PbTx-2, and PbTx-3, and of oxidized PbTx-1 and PbTx-2. Some of these open A-ring derivatives were in greater abundance than their non-hydrolyzed counterparts. All were in much greater abundance in bloom water filtrate compared with cell-rich fractions. Open A-ring compounds were cytotoxic in mouse neuroblastoma (N2a) cell assay. In the K. brevis bloom-exposed Eastern oyster, brevetoxin metabolites with opened A rings were identified (e.g., open-ring cysteine-PbTx conjugates), contributing to their overall toxin burden.
3.Brevetoxin metabolism and elimination in the Eastern oyster (Crassostrea virginica) after controlled exposures to Karenia brevis.
Plakas SM1, Wang Z, El Said KR, Jester EL, Granade HR, Flewelling L, Scott P, Dickey RW. Toxicon. 2004 Nov;44(6):677-85.
The metabolism and elimination of brevetoxins were examined in the Eastern oyster (Crassostrea virginica) following controlled exposures to Karenia brevis cultures in the laboratory. After a 2-day exposure period ( approximately 62 million cells/oyster), elimination of brevetoxins and their metabolites was monitored by using liquid chromatography/mass spectrometry (LC/MS). Composite toxin in oyster extracts was measured by in vitro assay (i.e. cytotoxicity, receptor binding, and ELISA). Of the parent algal toxins, PbTx-1 and PbTx-2 were not detectable by LC/MS in K. brevis-exposed oysters. PbTx-3 and PbTx-9, which are accumulated directly from K. brevis and through metabolic reduction of PbTx-2 in the oyster, were at levels initially (after exposure) of 0.74 and 0.49 microg equiv./g, respectively, and were eliminated largely within 2 weeks after dosing. PbTx-7 and PbTx-10, the reduced forms of PbTx-1, were non-detectable. Conjugative brevetoxin metabolites identified previously in field-exposed oysters were confirmed in the laboratory-exposed oysters.
4.LC/MS analysis of brevetoxin metabolites in the Eastern oyster (Crassostrea virginica).
Wang Z1, Plakas SM, El Said KR, Jester EL, Granade HR, Dickey RW. Toxicon. 2004 Mar 15;43(4):455-65.
Brevetoxin (PbTx) metabolism was examined in the Eastern oyster (Crassostrea virginica) following exposure to a Karenia brevis red tide, by using LC/MS(/MS) and cytotoxicity assay. Metabolites observed in field-exposed oysters were confirmed in oysters exposed to K. brevis cultures in the laboratory. Previously, we identified a cysteine conjugate and its sulfoxide (MH(+): m/z 1018 and 1034) as metabolites of the brevetoxin congener PbTx-2. In the present study, we found a cysteine conjugate and its sulfoxide with A-type brevetoxin backbone structure (MH(+): m/z 990 and 1006), as probable derivatives of PbTx-1. We also found glycine-cysteine-PbTx (m/z 1047 and 1075), gamma-glutamyl-cysteine-PbTx (m/z 1147), and glutathione-PbTx (m/z 1176 and 1204) conjugates with A- and B-type backbone structures. Amino acid-PbTx conjugates react with fatty acids through amide linkage to form a series of fatty acid-amino acid-PbTx conjugates. These fatty acid conjugates are major contributors to the composite cytototoxic responses obtained in extracts of brevetoxin-contaminated oysters.

Spectrum

Predicted LC-MS/MS Spectrum - 10V, Positive

Experimental Conditions

Ionization Mode: Positive
Collision Energy: 10 eV
Instrument Type: QTOF (generic), spectrum predicted by CFM-ID
Mass Resolution: 0.0001 Da
Molecular Formula: C49H68O14
Molecular Weight (Monoisotopic Mass): 880.4609 Da
Molecular Weight (Avergae Mass): 881.0558 Da

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket