Candicidin D
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-00600 |
CAS | 39372-30-0 |
Molecular Weight | 1109.30 |
Molecular Formula | C59H84N2O18 |
Online Inquiry
Description
Candicidin is a heptaene macrolide antibiotic produced by Streptomyces griseus. It has antifungal activity and is used as a topical antifungal.
Specification
Synonyms | Candizidin; Candicidin D1; Levorin A2 |
IUPAC Name | (23E,25E,27E,29E,31E,33E,35E)-22-[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-38-[7-(4-aminophenyl)-5-hydroxy-4-methyl-7-oxoheptan-2-yl]-10,12,14,18,20-pentahydroxy-37-methyl-2,4,8,16-tetraoxo-1-oxacyclooctatriaconta-23,25,27,29,31,33,35-heptaene-19-carboxylic acid |
Canonical SMILES | CC1C=CC=CC=CC=CC=CC=CC=CC(CC(C(C(CC(=O)CC(CC(CC(CC(=O)CCCC(=O)CC(=O)OC1C(C)CC(C)C(CC(=O)C2=CC=C(C=C2)N)O)O)O)O)O)C(=O)O)O)OC3C(C(C(C(O3)C)O)N)O |
InChI | InChI=1S/C59H84N2O18/c1-35-18-15-13-11-9-7-5-6-8-10-12-14-16-21-47(78-59-56(74)54(61)55(73)38(4)77-59)33-51(71)53(58(75)76)50(70)31-46(67)30-45(66)29-44(65)28-43(64)27-41(62)19-17-20-42(63)32-52(72)79-57(35)37(3)26-36(2)48(68)34-49(69)39-22-24-40(60)25-23-39/h5-16,18,21-25,35-38,43-45,47-48,50-51,53-57,59,64-66,68,70-71,73-74H,17,19-20,26-34,60-61H2,1-4H3,(H,75,76)/b6-5+,9-7+,10-8+,13-11+,14-12+,18-15+,21-16+/t35?,36?,37?,38-,43?,44?,45?,47?,48?,50?,51?,53?,54+,55-,56+,57?,59?/m1/s1 |
InChI Key | OPGSFDUODIJJGF-JBUZINEHSA-N |
Properties
Appearance | Yellow Needle Crystal |
Antibiotic Activity Spectrum | fungi |
Reference Reading
1. The polyene antifungal candicidin is selectively packaged into membrane vesicles in Streptomyces S4
Sarah A Blackburn, Mark Shepherd, Gary K Robinson Arch Microbiol. 2022 Apr 30;204(5):289. doi: 10.1007/s00203-022-02906-w.
In recent years, much attention has been focused on the biogenesis, engineering and utilisation of outer membrane vesicles (OMVs) in Gram-negative bacteria in a range of environments and niches. While the precise mechanism of biogenesis is unknown, it is focused on the modification of the Gram-negative cell wall to facilitate blebbing at sites of weakness in and around the characteristically thin peptidoglycan layer within the periplasm. Here, we investigate the biogenesis of membrane vesicles (MVs) in the Gram-positive organism Streptomyces albus S4 (Seipke et al. J Bacteriol 193:4270-4271, 2011 and Fazal et al. Antonie Van Leeuwenhoek 113:511-520, 2020). The S. albus S4 strain is an antifungal (candicidin and antimycin) producing organism that was isolated from attine ants (Barke et al. BMC Biol 8:109, 2010). The biogenesis and characterisation of S. albus S4 MVs is demonstrated using the wild-type (WT) and mutant strains ΔantC (no antimycin production) ΔfscC (no candicidin production) and ΔantC ΔfscC (produces neither antimycin nor candicidin). Here, we have shown that the S. albus S4 strain produces MVs and that these are comprised of both specific protein profiles and secondary metabolites, with a clear demonstration of the ability to selectively package one antifungal (candicidin) but not the other (antimycin).
2. Light-Induced Transformation of the Aromatic Heptaene Antifungal Antibiotic Candicidin D into Its All-Trans Isomer
Paweł Szczeblewski, Tomasz Laskowski, Aleksandra Bałka, Edward Borowski, Sławomir Milewski J Nat Prod. 2018 Jul 27;81(7):1540-1545. doi: 10.1021/acs.jnatprod.7b00821. Epub 2018 Jun 14.
Illumination of the aromatic heptaene macrolide antifungal antibiotic candicicin D with UV light results in an isomerization of the molecule. The product formed after irradiation of the candicidin complex with UV light (λ = 365 nm), namely, iso-candicidin D, was isolated and subjected to 2D NMR studies, consisting of DQF-COSY, ROESY, TOCSY, HSQC, and HMBC experiments. The obtained spectral data unambiguously evidenced that iso-candicidin D was the all-trans isomer of the native antibiotic, and straightening of the heptaenic chromophore was the only light-induced structural change that occurred. Hence, iso-candicidin D was proclaimed to be a prototype of a novel class of polyene macrolide antifungal antibiotics: the all-trans aromatic heptaenes, containing a macrolide ring similar to that of amphotericin B.
3. Candicidin Isomer Production Is Essential for Biocontrol of Cucumber Rhizoctonia Rot by Streptomyces albidoflavus W68
Xueyan Yao, Zhenying Zhang, Jun Huang, Shiping Wei, Xianyun Sun, Yihua Chen, Hongwei Liu, Shaojie Li Appl Environ Microbiol. 2021 Apr 13;87(9):e03078-20. doi: 10.1128/AEM.03078-20. Print 2021 Apr 13.
Diseases caused by soilborne fungal pathogens result in significant crop yield losses and quality reduction. Streptomyces albidoflavus strain W68 is effective in controlling several soilborne fungal diseases. To identify antifungal substances critical for biocontrol activity of W68, the genome of W68 was sequenced and a linear chromosome of 6.80 Mb was assembled. A total of 21 secondary metabolite biosynthesis gene clusters (BGCs), accounting for 12.27% of the genome, were identified. Core gene deletion mutants for each of all 8 BGCs for nonribosomal peptide synthetases and polyketide synthases were created. Among them, only the mutant lacking ctg1-5755 (the gene was renamed as fscDW68) in BGC 19, which shares 100% sequence similarity with the BGC for candicidin synthesis, showed obvious reduction in antifungal activity. A pot experiment revealed that biocontrol effects of the ΔfscDW68 mutant in Rhizoctonia rot of cucumber were also significantly compromised relative to W68. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that W68 but not the ΔfscDW68 mutant can produce candicidin isomers, indicating that the production of candicidin isomers is key for antifungal activity and biocontrol activity of S. albidoflavus W68.IMPORTANCE This study reports that candicidin-like secondary metabolites produced by microbial cells in natural soil environments can effectively control soilborne fungal diseases, revealing a novel mechanism of microbial biocontrol agents. We demonstrated that the main antifungal activity and biocontrol activity of Streptomyces albidoflavus strain W68 are attributable to the production of candicidin isomers, suggesting that gene clusters for candicidin-like compound biosynthesis might be used as molecular markers to screen and breed microbial strains for biocontrol agent development.
Recommended Products
BBF-02576 | Pneumocandin B0 | Inquiry |
BBF-00969 | Homomycin | Inquiry |
BBF-00703 | Carminomycin I | Inquiry |
BBF-03816 | Milbemycin oxime | Inquiry |
BBF-04609 | 1,1-Dimethylbiguanide hydrochloride | Inquiry |
BBF-03827 | Polymyxin B sulphate | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳