Cerexin A

Cerexin A

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-00516
CAS 55467-31-7
Molecular Weight 1374.58
Molecular Formula C63H103N15O19

Online Inquiry

Description

It is produced by the strain of Bacillus cereus. It has anti-gram-positive bacterial activity.

Specification

Synonyms Antibiotic 60-6; CEREXIN-A; LS-52766
IUPAC Name (3R)-2-[[2-[[2-[[(3R)-2-[[6-amino-2-[[4-amino-2-[[4-amino-2-[[2-[[2-[[4-amino-2-[(3-hydroxy-9-methyldecanoyl)amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-4-oxobutanoyl]amino]-4-oxobutanoyl]amino]-4-hydroxyhexanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-3-methylpentanoic acid
Canonical SMILES CCC(C)C(C(=O)O)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC(CCN)O)NC(=O)C(CC(=O)N)NC(=O)C(CC(=O)N)NC(=O)C(C(C)C)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)CC(CCCCCC(C)C)O
InChI InChI=1S/C63H103N15O19/c1-10-33(8)52(63(96)97)77-56(89)40(22-35-28-68-39-19-15-14-18-38(35)39)70-59(92)45(29-79)74-62(95)53(34(9)80)78-57(90)41(23-37(82)20-21-64)71-54(87)43(26-47(66)84)72-55(88)44(27-48(67)85)73-60(93)50(31(4)5)76-61(94)51(32(6)7)75-58(91)42(25-46(65)83)69-49(86)24-36(81)17-13-11-12-16-30(2)3/h14-15,18-19,28,30-34,36-37,40-45,50-53,68,79-82H,10-13,16-17,20-27,29,64H2,1-9H3,(H2,65,83)(H2,66,84)(H2,67,85)(H,69,86)(H,70,92)(H,71,87)(H,72,88)(H,73,93)(H,74,95)(H,75,91)(H,76,94)(H,77,89)(H,78,90)(H,96,97)/t33-,34-,36?,37?,40?,41?,42?,43?,44?,45?,50?,51?,52?,53?/m1/s1
InChI Key FJMFWIVNMAFUOP-MEIKFJLBSA-N

Properties

Appearance Powder
Antibiotic Activity Spectrum Gram-positive bacteria
Boiling Point 1796.9 °C at 760 mmHg
Melting Point 190 °C (dec.)
Density 1.289 g/cm3
Solubility Soluble in DMF, DMSO

Reference Reading

1. Total Synthesis and Stereochemical Assignment of the Antimicrobial Lipopeptide Cerexin A1
Stephen A Cochrane, Richard R Surgenor, Kevin M W Khey, John C Vederas Org Lett. 2015 Nov 6;17(21):5428-31. doi: 10.1021/acs.orglett.5b02779. Epub 2015 Oct 14.
The isolation and total synthesis of the antimicrobial lipopeptide cerexin A1 is reported. This synthesis includes the preparation of orthogonally protected γ-hydroxylysine, utilizing a nitrile Reformatsky-type reaction as a key step to yield both diastereomers more efficiently than previously reported methods. The configuration of the β-hydroxyl in the lipid tail was determined by the use of a modified Ohrui-Akasaka approach. Furthermore, new cerexin analogues from Bacillus mycoides ATCC 21929 were isolated and characterized, revealing an ε-amino succinylation of a hydroxylysine residue that is unusual in a nonribosomal peptide synthetase product.
2. Novel Effective Bacillus cereus Group Species " Bacillus clarus" Is Represented by Antibiotic-Producing Strain ATCC 21929 Isolated from Soil
Marysabel Méndez Acevedo, Laura M Carroll, Manjari Mukherjee, Emma Mills, Lingzi Xiaoli, Edward G Dudley, Jasna Kovac mSphere. 2020 Nov 4;5(6):e00882-20. doi: 10.1128/mSphere.00882-20.
Gram-positive, spore-forming members of the Bacillus cereus group species complex are widespread in natural environments and display various degrees of pathogenicity. Recently, B. cereus group strain Bacillus mycoides Flugge ATCC 21929 was found to represent a novel lineage within the species complex, sharing a relatively low degree of genomic similarity with all B. cereus group genomes (average nucleotide identity [ANI] < 88). ATCC 21929 has been previously associated with the production of a patented antibiotic, antibiotic 60-6 (i.e., cerexin A); however, the virulence potential and growth characteristics of this lineage have never been assessed. Here, we provide an extensive genomic and phenotypic characterization of ATCC 21929, and we assess its pathogenic potential in vitro. ATCC 21929 most closely resembles Bacillus paramycoides NH24A2T (ANI and in silico DNA-DNA hybridization values of 86.70 and 34.10%, respectively). Phenotypically, ATCC 21929 does not possess cytochrome c oxidase activity and is able to grow at a range of temperatures between 15 and 43°C and a range of pH between 6 and 9. At 32°C, ATCC 21929 shows weak production of diarrheal enterotoxin hemolysin BL (Hbl) but no production of nonhemolytic enterotoxin (Nhe); at 37°C, neither Hbl nor Nhe is produced. Additionally, at 37°C, ATCC 21929 does not exhibit cytotoxic effects toward HeLa cells. With regard to fatty acid composition, ATCC 21929 has iso-C17:0 present in highest abundance. Based on the characterization provided here, ATCC 21929T (= PS00077AT = PS00077BT = PSU-0922T = BHPT) represents a novel effective B. cereus group species, which we propose as effective species "Bacillus clarus"IMPORTANCE The B. cereus group comprises numerous closely related lineages with various degrees of pathogenic potential and industrial relevance. Species-level taxonomic classification of B. cereus group strains is important for risk evaluation and communication but remains challenging. Biochemical and phenotypic assays are often used to assign B. cereus group strains to species but are insufficient for accurate taxonomic classification on a genomic scale. Here, we show that antibiotic-producing ATCC 21929 represents a novel lineage within the B. cereus group that, by all metrics used to delineate prokaryotic species, exemplifies a novel effective species. Furthermore, we show that ATCC 21929 is incapable of producing enterotoxins Hbl and Nhe or exhibiting cytotoxic effects on HeLa cells at human body temperature in vitro These results provide greater insight into the genomic and phenotypic diversity of the B. cereus group and may be leveraged to inform future public health and food safety efforts.
3. A selective isolation procedure for Pseudomonas bacteria
Y Wakisaka, K Koizumi J Antibiot (Tokyo). 1982 May;35(5):622-8. doi: 10.7164/antibiotics.35.622.
A selective isolation medium was devised for Pseudomonas bacteria. An antibiotic mixture which contained 10 micrograms per ml of cerexin A, 10 micrograms per ml of nalidixic acid and 30 micrograms per ml of cycloheximide was used. With the antibiotic medium, 58 strains of bacteria presumed to be Pseudomonas which were subdivided into 18 taxonomically different groups were isolated from 3 soil samples with 9% of contaminants. With this method, it was possible to isolate a Pseudomonas bacterium from a sample containing about 400 times as many other Gram-positive and -negative bacteria.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket