Chelocardin

Chelocardin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Chelocardin
Category Antibiotics
Catalog number BBF-00632
CAS 29144-42-1
Molecular Weight 411.41
Molecular Formula C22H21NO7
Purity 95%

Online Inquiry

Description

Chelocardin is produced by the strain of Nocardia sulphurea M-319. It has anti-gram-positive and negative bacterial activity, and is partially cross-resistant to tetracycline.

Specification

Synonyms Cetocycline; 2-Decarboxamido-2-acetyl-4-desdimethylamino-4-amino-9-methyl-5a,6-anhydrotetracycline
IUPAC Name (1R,4aR,12aS)-3-acetyl-1-amino-4,4a,6,7-tetrahydroxy-8,11-dimethyl-12,12a-dihydro-1H-tetracene-2,5-dione
Canonical SMILES CC1=C(C2=C(C3=C(CC4C(C(=O)C(=C(C4(C3=O)O)O)C(=O)C)N)C(=C2C=C1)C)O)O
InChI InChI=1S/C22H21NO7/c1-7-4-5-10-8(2)11-6-12-16(23)19(27)13(9(3)24)20(28)22(12,30)21(29)15(11)18(26)14(10)17(7)25/h4-5,12,16,25-26,28,30H,6,23H2,1-3H3/t12-,16+,22+/m0/s1
InChI Key LUYXWZOOMKBUMB-ONJZCGHCSA-N

Properties

Antibiotic Activity Spectrum gram-positive bacteria; gram-negative bacteria
Boiling Point 673.4°C at 760 mmHg
Melting Point 218-220 °C
Density 1.572 g/cm3

Reference Reading

1. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics
Tadeja Lukežič, Antoine Abou Fayad, Chantal Bader, Kirsten Harmrolfs, Johannes Bartuli, Sebastian Groß, Urška Lešnik, Fabienne Hennessen, Jennifer Herrmann, Špela Pikl, Hrvoje Petković, Rolf Müller ACS Chem Biol. 2019 Mar 15;14(3):468-477. doi: 10.1021/acschembio.8b01125. Epub 2019 Feb 12.
To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.
2. Heterologous expression of the atypical tetracycline chelocardin reveals the full set of genes required for its biosynthesis
Tadeja Lukežič, Špela Pikl, Nestor Zaburannyi, Maja Remškar, Hrvoje Petković, Rolf Müller Microb Cell Fact. 2020 Dec 19;19(1):230. doi: 10.1186/s12934-020-01495-x.
Background: Chelocardin (CHD) exhibits a broad-spectrum antibiotic activity and showed promising results in a small phase II clinical study conducted on patients with urinary tract infections. Importantly, CHD was shown to be active also against tetracycline-resistant Gram-negative pathogens, which is gaining even more importance in today's antibiotic crisis. We have demonstrated that modifications of CHD through genetic engineering of its producer, the actinomycete Amycolatopsis sulphurea, are not only possible but yielded even more potent antibiotics than CHD itself, like 2-carboxamido-2-deacetyl-chelocardin (CD-CHD), which is currently in preclinical evaluation. A. sulphurea is difficult to genetically manipulate and therefore manipulation of the chd biosynthetic gene cluster in a genetically amenable heterologous host would be of high importance for further drug-discovery efforts. Results: We report heterologous expression of the CHD biosynthetic gene cluster in the model organism Streptomyces albus del14 strain. Unexpectedly, we found that the originally defined CHD gene cluster fails to provide all genes required for CHD formation, including an additional cyclase and two regulatory genes. Overexpression of the putative pathway-specific streptomyces antibiotic regulatory protein chdB in A. sulphurea resulted in an increase of both, CHD and CD-CHD production. Applying a metabolic-engineering approach, it was also possible to generate the potent CHD analogue, CD-CHD in S. albus. Finally, an additional yield increase was achieved in S. albus del14 by in-trans overexpression of the chdR exporter gene, which provides resistance to CHD and CDCHD. Conclusions: We identified previously unknown genes in the CHD cluster, which were shown to be essential for chelocardin biosynthesis by expression of the full biosynthetic gene cluster in S. albus as heterologous host. When comparing to oxytetracycline biosynthesis, we observed that the CHD gene cluster contains additional enzymes not found in gene clusters encoding the biosynthesis of typical tetracyclines (such as oxytetracycline). This finding probably explains the different chemistries and modes of action, which make CHD/CD-CHD valuable lead structures for clinical candidates. Even though the CHD genes are derived from a rare actinomycete A. sulphurea, the yield of CHD in the heterologous host was very good. The corrected nucleotide sequence of the CHD gene cluster now contains all gene products required for the production of CHD in a genetically amenable heterologous host, thus opening new possibilities towards production of novel and potent tetracycline analogues with a new mode of action.
3. Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin
Fabienne Hennessen, Marcus Miethke, Nestor Zaburannyi, et al. Antibiotics (Basel). 2020 Sep 18;9(9):619. doi: 10.3390/antibiotics9090619.
The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket