1. Synthesis, SAR studies, and insecticidal activities of certain N-heterocycles derived from 3-((2-chloroquinolin-3-yl)methylene)-5-phenylfuran-2(3 H)-one against Culex pipiens L. larvae
Sayed K Ramadan, Doaa R Abdel Haleem, Hisham S M Abd-Rabboh, Nourhan M Gad, Wael S I Abou-Elmagd, David S A Haneen RSC Adv. 2022 May 5;12(22):13628-13638. doi: 10.1039/d2ra02388a.
An acid hydrazide derivative was synthesized and transformed into a variety of valuable N-heterocycles such as pyridazinone, oxadiazole, triazolopyridazinone, and triazole derivatives via reactions with certain carbon electrophiles such as 4-methoxybenzaldehyde, indole-3-carbaldehyde, pentan-2,4-dione, and carbon disulfide. The chemical structures of all prepared compounds were verified via their analytical and spectroscopic data. The insecticidal activity of the N-heterocycles was evaluated against field and lab strains of the third larval instar of Culex pipiens. All tested compounds exhibited higher larvicidal activity against the lab strains compared to the field strains, with dissimilar ratios. The obtained results demonstrate that the high toxicity achieved by oxadiazole followed the order of furanone, pyridazinone and hydrazide, with lower LC50 values of the hydrazone and N-acetylpyridazinone derivatives compared to that of imidacloprid. Interestingly, these compounds are promising agents for insect pest control, especially since they are insoluble in water and can overcome the disadvantages of neonicotinoid applications in pest management programs.
2. 1-(7-Chloroquinolin-4-yl)-N-(4-Methoxybenzyl)-5-Methyl-1H-1,2, 3-Triazole-4- carboxamide Reduces Aβ Formation and Tau Phosphorylation in Cellular Models of Alzheimer's Disease
Mariana G Fronza, Manoela Sacramento, Diego Alves, Domenico Praticò, Lucielli Savegnago Neurochem Res. 2022 Apr;47(4):1110-1122. doi: 10.1007/s11064-021-03514-8. Epub 2022 Feb 15.
1-(7-Chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) is a new multi-target directed ligand (MTDL) rationally designed to have affinity with β-secretase (BACE), Glycogen Synthase Kinase 3β (GSK3β) and acetylcholinesterase, which are considered promising targets on the development of disease-modifying therapies against Alzheimer's Disease (AD). Previously, QTC-4-MeOBnE treatment showed beneficial effects in preclinical AD-like models by influencing in vivo neurogenesis, oxidative and inflammatory pathways. However, the biological effect and mechanism of action exerted by QTC-4-MeOBnE in AD cellular models have not been elucidated yet. Hereby we investigate the acute effect of QTC-4-MeOBnE on neuronal cells overexpressing Amyloid Protein Precursor (APP) or human tau protein, the two main features of the AD pathophysiology. When compared to the control group, QTC-4-MeOBnE treatment prevented amyloid beta (Aβ) formation through the downregulation of APP and BACE levels in APPswe-expressing cells. Furthermore, in N2a cells overexpressing human tau, QTC-4-MeOBnE reduced the levels of phosphorylated forms of tau via the modulation of the GSK3β pathway. Taken together, our findings provide new insights into the mechanism of action exerted by QTC-4-MeOBnE in AD cellular models, and further support its potential as an interesting therapeutic strategy against AD.
3. Bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) as new catalytic material
Joanna Drzeżdżon, Celina Mokwa, Artur Sikorski, Patrycja Parnicka, Adriana Zaleska-Medynska, Jacek Malinowski, Magdalena Kwiatkowska, Barbara Gawdzik, Dagmara Jacewicz Sci Rep. 2022 Feb 9;12(1):2151. doi: 10.1038/s41598-022-06312-6.
Nowadays, studies are carried out on the design and synthesis of new catalysts for olefin oligomerization and polymerization, which would contain non-toxic metals and at the same time show high catalytic activities. Complex compounds of transition metal ions such as Fe(II), Cr(III) and Zr(II) containing pyridine or quinoline as ligands show at least moderate catalytic activity in ethylene and propylene polymerizations. To investigate the catalytic activity of the complex containing pyridine ligands and quinoline derivatives, here we have synthesized the crystals of new bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) solvate. The synthesized cobalt(II) complex compound was tested in reactions of 2-chloro-2-propen-1-ol and norbornene oligomerizations. Our studies showed that bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) after activation by MMAO-12 catalyzes the formation of oligomers in nitrogen atmosphere, under atmospheric pressure and at room temperature. Bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) possesses moderate catalytic activity in the formation of norbornene oligomers process and low catalytic activity in 2-chloro-2-propen-1-ol oligomerization.