Coprogen
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Others |
Catalog number | BBF-05131 |
CAS | 31418-71-0 |
Molecular Weight | 821.67 |
Molecular Formula | C35H53FeN6O13 |
Online Inquiry
Specification
Synonyms | iron(III)-coprogen; ferric coprogen |
IUPAC Name | [(E)-5-[3-[(2S,5S)-5-[3-[[(E)-5-hydroxy-3-methylpent-2-enoyl]-oxidoamino]propyl]-3,6-dioxopiperazin-2-yl]propyl-oxidoamino]-3-methyl-5-oxopent-3-enyl] (2S)-2-acetamido-5-[[(E)-5-hydroxy-3-methylpent-2-enoyl]-oxidoamino]pentanoate;iron(3+) |
Canonical SMILES | CC(=CC(=O)N(CCCC1C(=O)NC(C(=O)N1)CCCN(C(=O)C=C(C)CCOC(=O)C(CCCN(C(=O)C=C(C)CCO)[O-])NC(=O)C)[O-])[O-])CCO.[Fe+3] |
InChI | InChI=1S/C35H53N6O13,Fe/c1-23(11-17-42)20-30(45)39(51)14-5-8-27-33(48)38-28(34(49)37-27)9-6-15-40(52)32(47)22-25(3)13-19-54-35(50)29(36-26(4)44)10-7-16-41(53)31(46)21-24(2)12-18-43;/h20-22,27-29,42-43H,5-19H2,1-4H3,(H,36,44)(H,37,49)(H,38,48);/q-3;+3/b23-20+,24-21+,25-22+;/t27-,28-,29-;/m0,/s1 |
InChI Key | FQIVLXIUJLOKPL-DWZMLRRXSA-N |
Reference Reading
1. Transcriptional Differences Guided Discovery and Genetic Identification of Coprogen and Dimerumic Acid Siderophores in Metarhizium robertsii
Jinyu Zhang, Peng Zhang, Guohong Zeng, Guangwei Wu, Landa Qi, Guocan Chen, Weiguo Fang, Wen-Bing Yin Front Microbiol. 2021 Nov 25;12:783609. doi: 10.3389/fmicb.2021.783609. eCollection 2021.
Siderophores are small molecular iron chelators and participate in the multiple cellular processes in fungi. In this study, biosynthesis gene clusters of coprogens and dimerumic acids were identified by transcriptional level differences of genes related to iron deficiency conditions in Metarhizium robertsii. This leads to the characterization of new coprogen metachelin C (1) and five known siderophores metachelin A (2), metachelin A-CE (3), metachelin B (4), dimerumic acid 11-mannoside (5), and dimerumic acid (6). The structure of metachelin C (1) was elucidated by NMR spectroscopy and HR-ESI-MS analysis. Genetic deletions of mrsidA, and mrsidD abolished the production of compounds 1-6 that implied their involvement in the biosynthesis of coprogen and dimerumic acid. Interestingly, NRPS gene mrsidD is responsible for biosynthesis of both coprogen and dimerumic acid, thus we proposed plausible biosynthetic pathways for the synthesis of coprogen and dimerumic acid siderophores. Therefore, our study provides the genetic basis for understanding the biosynthetic pathway of coprogen and dimerumic acid in Metarhizium robertsii.
2. The Siderophore Transporters Sit1 and Sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-Type Siderophores in Aspergillus fumigatus
Mario Aguiar, Thomas Orasch, Matthias Misslinger, Anna-Maria Dietl, Fabio Gsaller, Hubertus Haas J Fungi (Basel). 2021 Sep 16;7(9):768. doi: 10.3390/jof7090768.
Siderophore-mediated acquisition of iron has been shown to be indispensable for the virulence of several fungal pathogens, the siderophore transporter Sit1 was found to mediate uptake of the novel antifungal drug VL-2397, and siderophores were shown to be useful as biomarkers as well as for imaging of fungal infections. However, siderophore uptake in filamentous fungi is poorly characterized. The opportunistic human pathogen Aspergillus fumigatus possesses five putative siderophore transporters. Here, we demonstrate that the siderophore transporters Sit1 and Sit2 have overlapping, as well as unique, substrate specificities. With respect to ferrichrome-type siderophores, the utilization of ferrirhodin and ferrirubin depended exclusively on Sit2, use of ferrichrome A depended mainly on Sit1, and utilization of ferrichrome, ferricrocin, and ferrichrysin was mediated by both transporters. Moreover, both Sit1 and Sit2 mediated use of the coprogen-type siderophores coprogen and coprogen B, while only Sit1 transported the bacterial ferrioxamine-type xenosiderophores ferrioxamines B, G, and E. Neither Sit1 nor Sit2 were important for the utilization of the endogenous siderophores fusarinine C and triacetylfusarinine C. Furthermore, A. fumigatus was found to lack utilization of the xenosiderophores schizokinen, basidiochrome, rhizoferrin, ornibactin, rhodotorulic acid, and enterobactin. Taken together, this study characterized siderophore use by A. fumigatus and substrate characteristics of Sit1 and Sit2.
3. Discovery and genetic identification of amphiphilic coprogen siderophores from Trichoderm hypoxylon
Jinyu Zhang, Landa Qi, Guocan Chen, Wen-Bing Yin Appl Microbiol Biotechnol. 2021 Apr;105(7):2831-2839. doi: 10.1007/s00253-021-11245-7. Epub 2021 Mar 23.
Siderophores are small molecular iron chelators and participate in the multiple cellular processes in fungi. In this study, we discovered and identified five amphiphilic coprogen siderophores including three new natural products according to LC-MS-guided separation strategy from Trichoderm hypoxylon. The structures of three new coprogens were elucidated by NMR spectroscopy, and high-resolution (HR)-ESI-MS analysis. Genetic deletions of dfcA and dfcB abolished the production of compounds 1-5 that implied their involvement in the biosynthesis of coprogens. Interestingly, cultivations of ΔdfcA and ΔdfcB mutants with pathogenic fungi Fusarium oxysporum and Mucor corcinelloides showed the weaker inhibitions in comparison to wild type that demonstrated coprogen's role in combating the pathogenic fungi. Our study not only enriched the diversities of siderophores but also provided an approach for finding the rare amphiphilic coprogen siderophores in fungi. Furthermore, this work provided a basis for investigation on the biosynthesis of fungal amphiphilic siderophores and their ecological roles in nature. KEY POINTS: · A series of amphiphilic coprogens were found. · The gene cluster of amphiphilic coprogens and ecological roles were elucidated.
Recommended Products
BBF-05880 | N-Me-L-Ala-maytansinol | Inquiry |
BBF-03819 | Spinosyn A | Inquiry |
BBF-03753 | Baicalin | Inquiry |
BBF-00569 | Aspoxicillin | Inquiry |
BBF-02577 | Pneumocandin C0 | Inquiry |
BBF-03880 | Cyclopamine | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳