D-Lysine methyl ester

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-04708
CAS 42807-32-9
Molecular Weight 160.22
Molecular Formula C7H16N2O2

Online Inquiry

Specification

Synonyms Methyl D-lysinate
IUPAC Name methyl (2R)-2,6-diaminohexanoate
Canonical SMILES COC(=O)C(CCCCN)N
InChI InChI=1S/C7H16N2O2/c1-11-7(10)6(9)4-2-3-5-8/h6H,2-5,8-9H2,1H3/t6-/m1/s1
InChI Key KPNBUPJZFJCCIQ-ZCFIWIBFSA-N

Reference Reading

1. Imaging of neurosphere oxygenation with phosphorescent probes
Ruslan I Dmitriev, Alexander V Zhdanov, Yvonne M Nolan, Dmitri B Papkovsky Biomaterials. 2013 Dec;34(37):9307-17. doi: 10.1016/j.biomaterials.2013.08.065. Epub 2013 Sep 6.
Multicellular spheroids are useful models of mammalian tissue for studies of cell proliferation, differentiation, replacement therapies and drug action. Having a size of 100-500 μm they mimic in vivo micro-environment and characteristic gradients of O2, pH and nutrients. We describe the use of cell-penetrating O2 probes based on phosphorescent Pt-porphyrins to perform high-resolution 2D and 3D mapping of O2 in spheroid structures by live cell fluorescence imaging technique. Optimised procedures for preparation of neurospheres from cortical neural cells isolated from embryonic rat brain, their staining with the phosphorescent O2 probes NanO2 and MM2 and subsequent analysis of oxygenation on different live cell imaging platforms, including widefield and confocal phosphorescence lifetime imaging microscopy (PLIM), conventional confocal and two-photon ratiometric intensity based O2 detection are presented. This is followed by a series of physiological experiments in which oxygenation patterns of the neurospheres are correlated with culturing conditions (atmospheric hypoxia and hyperoxia, size, growth factors), distribution of stem cells, mature neurons and astrocytes, HIF-2α stabilisation and responses to metabolic stimulation. The O2 imaging method allows multiplexing with many conventional fluorescent probes to perform multi-parametric imaging analysis of cells in 3D microenvironment. It can be applied to other types of spheroids and 3D tissue models.
2. Techniques for imaging Ca2+ signaling in human sperm
Katherine Nash, Linda Lefievre, Ruben Peralta-Arias, Jennifer Morris, Aduen Morales-Garcia, Tom Connolly, Sarah Costello, Jackson C Kirkman-Brown, Stephen J Publicover J Vis Exp. 2010 Jun 16;(40):1996. doi: 10.3791/1996.
Fluorescence microscopy of cells loaded with fluorescent, Ca(2+)-sensitive dyes is used for measurement of spatial and temporal aspects of Ca(2+) signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca(2+)-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-up and incubated under capacitating conditions for 0-24 h, depending upon the experiment. The cell-permeant AM (acetoxy methyl ester) ester form of the Ca(2+)-reporting dye is then added to a cell aliquot and a period of 1 h is allowed for loading of the dye into the cytoplasm. We use visible wavelength dyes to minimize photo-damage to the cells, but this means that ratiometric recording is not possible. Advantages and disadvantages of this approach are discussed. During the loading period cells are introduced into an imaging chamber and allowed to adhere to a poly-D-lysine coated coverslip. At the end of the loading period excess dye and loose cells are removed by connection of the chamber to the perfusion apparatus. The chamber is perfused continuously, stimuli and modified salines are then added to the perfusion header. Experiments are recorded by time-lapse acquisition of fluorescence images and analyzed in detail offline, by manually drawing regions of interest. Data are normalized to pre-stimulus levels such that, for each cell (or part of a cell), a graph showing the Ca(2+) response as % change in fluorescence is obtained.
3. BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes
Meysam Yazdankhah, Sayan Ghosh, Peng Shang, Nadezda Stepicheva, et al. Autophagy. 2021 Oct;17(10):3140-3159. doi: 10.1080/15548627.2020.1871204. Epub 2021 Jan 19.
Retinal ganglion cell axons are heavily myelinated (98%) and myelin damage in the optic nerve (ON) severely affects vision. Understanding the molecular mechanism of oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes will be essential for developing new therapeutic approaches for ON demyelinating diseases. To this end, we developed a new method for isolation and culture of ON-derived oligodendrocyte lineage cells and used it to study OPC differentiation. A critical aspect of cellular differentiation is macroautophagy/autophagy, a catabolic process that allows for cell remodeling by degradation of excess or damaged cellular molecules and organelles. Knockdown of ATG9A and BECN1 (pro-autophagic proteins involved in the early stages of autophagosome formation) led to a significant reduction in proliferation and survival of OPCs. We also found that autophagy flux (a measure of autophagic degradation activity) is significantly increased during progression of oligodendrocyte differentiation. Additionally, we demonstrate a significant change in mitochondrial dynamics during oligodendrocyte differentiation, which is associated with a significant increase in programmed mitophagy (selective autophagic clearance of mitochondria). This process is mediated by the mitophagy receptor BNIP3L (BCL2/adenovirus E1B interacting protein 3-like). BNIP3L-mediated mitophagy plays a crucial role in the regulation of mitochondrial network formation, mitochondrial function and the viability of newly differentiated oligodendrocytes. Our studies provide novel evidence that proper mitochondrial dynamics is required for establishment of functional mitochondria in mature oligodendrocytes. These findings are significant because targeting BNIP3L-mediated programmed mitophagy may provide a novel therapeutic approach for stimulating myelin repair in ON demyelinating diseases.Abbreviations: A2B5: a surface antigen of oligodendrocytes precursor cells, A2B5 clone 105; ACTB: actin, beta; APC: an antibody to label mature oligodendrocytes, anti-adenomatous polyposis coli clone CC1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9A: autophagy related 9A; AU: arbitrary units; BafA1: bafilomycin A1; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; Ctl: control; COX8: cytochrome c oxidase subunit; CSPG4/NG2: chondroitin sulfate proteoglycan 4; DAPI: 4'6-diamino-2-phenylindole; DNM1L: dynamin 1-like; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; GFP: green fluorescent protein; HsESC: human embryonic stem cell; IEM: immunoelectron microscopy; LAMP1: lysosomal-associated membrane protein 1; LC3B: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MFN2: mitofusin 2; Mito-Keima: mitochondria-targeted monomeric keima-red; Mito-GFP: mitochondria-green fluorescent protein; Mito-RFP: mitochondria-red fluorescent protein; MitoSOX: red mitochondrial superoxide probe; MKI67: antigen identified by monoclonal antibody Ki 67; MMP: mitochondrial membrane potential; O4: oligodendrocyte marker O4; OLIG2: oligodendrocyte transcription factor 2; ON: optic nerve; OPA1: OPA1, mitochondrial dynamin like GTPase; OPC: oligodendrocyte progenitor cell; PDL: poly-D-lysine; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; RGC: retinal ganglion cell; ROS: reactive oxygen species; RT-PCR: real time polymerase chain reaction; SEM: standard error of the mean; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; TUBB3: tubulin, beta 3 class III.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket