D-Lysinol
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Others |
Catalog number | BBF-04709 |
CAS | 1313054-89-5 |
Molecular Weight | 132.21 |
Molecular Formula | C6H16N2O |
Online Inquiry
Specification
IUPAC Name | (2R)-2,6-diaminohexan-1-ol |
Canonical SMILES | C(CCN)CC(CO)N |
InChI | InChI=1S/C6H16N2O/c7-4-2-1-3-6(8)5-9/h6,9H,1-5,7-8H2/t6-/m1/s1 |
InChI Key | LTGPFZWZZNUIIK-ZCFIWIBFSA-N |
Reference Reading
1. Lysine Acetylome Profiling Reveals Diverse Functions of Acetylation in Deinococcus radiodurans
Yongqian Zhang, Nuomin Li, Qiushi Wei, Rui Min, Feng Liu, Fuli Wang, Yulin Deng Microbiol Spectr. 2022 Oct 26;10(5):e0101621. doi: 10.1128/spectrum.01016-21. Epub 2022 Aug 16.
Lysine acetylation is a highly conserved posttranslational modification that plays essential roles in multiple biological functions in a variety of organisms. Deinococcus radiodurans (D. radiodurans) is famous for its extreme resistance to radiation. However, few studies have focused on the lysine acetylation in D. radiodurans. In the present study, antibody enrichment technology and high-resolution liquid chromatography mass spectrometry are used to perform a global analysis of lysine acetylation of D. radiodurans. We create the largest acetylome data set in D. radiodurans to date, totally identifying 4,364 lysine acetylation sites on 1,410 acetylated proteins. Strikingly, of the 3,085 proteins annotated by the uniport database, 45.7% of proteins are acetylated in D. radiodurans. In particular, the glutamate (G) preferentially appears at the -1 and +1 positions of acetylated lysine residues by motif analysis. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. Protein-protein interaction networks demonstrate that four clusters are involved in DNA damage repair, including homologous recombination, mismatch repair, nucleotide excision repair, and base excision repair, which suggests that acetylation plays an indispensable role in the extraordinary capacity to survive high levels of ionizing radiation. Taken together, we report the most comprehensive lysine acetylation in D. radiodurans for the first time, which is of great significance to reveal its robust resistance to radiation. IMPORTANCE D. radiodurans is distinguished by the most radioresistant organism identified to date. Lysine acetylation is a highly conserved posttranslational modification that plays an essential role in the regulation of many cellular processes and may contribute to its extraordinary radioresistance. We integrate acetyl-lysine enrichment strategy, high-resolution mass spectrometry, and bioinformatics to profile the lysine acetylated proteins for the first time. It is striking that almost half of the total annotated proteins are identified as acetylated forms, which is the largest acetylome data set reported in D. radiodurans to date. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. The results of this study reinforce the notion that acetylation plays critical regulatory roles in diverse aspects of the cellular process, especially in DNA damage repair and metabolism. It provides insight into the roles of lysine acetylation in the robust resistance to radiation.
2. Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity
Dongwen Lv, Pratik Pal, Xingui Liu, Yannan Jia, et al. Nat Commun. 2021 Nov 25;12(1):6896. doi: 10.1038/s41467-021-27210-x.
PROteolysis-TArgeting Chimeras (PROTACs) have emerged as an innovative drug development platform. However, most PROTACs have been generated empirically because many determinants of PROTAC specificity and activity remain elusive. Through computational modelling of the entire NEDD8-VHL Cullin RING E3 ubiquitin ligase (CRLVHL)/PROTAC/BCL-xL/UbcH5B(E2)-Ub/RBX1 complex, we find that this complex can only ubiquitinate the lysines in a defined band region on BCL-xL. Using this approach to guide our development of a series of ABT263-derived and VHL-recruiting PROTACs, we generate a potent BCL-xL and BCL-2 (BCL-xL/2) dual degrader with significantly improved antitumor activity against BCL-xL/2-dependent leukemia cells. Our results provide experimental evidence that the accessibility of lysines on a target protein plays an important role in determining the selectivity and potency of a PROTAC in inducing protein degradation, which may serve as a conceptual framework to guide the future development of PROTACs.
3. Peripheral Administration of Selective Glycine Transporter-2 Inhibitor, Oleoyl-D-Lysine, Reverses Chronic Neuropathic Pain but Not Acute or Inflammatory Pain in Male Mice
Bruce S Wilson, Julian Peiser-Oliver, Alexander Gillis, Sally Evans, Claudia Alamein, Shannon N Mostyn, Susan Shimmon, Tristan Rawling, MacDonald J Christie, Robert J Vandenberg, Sarasa A Mohammadi J Pharmacol Exp Ther. 2022 Sep;382(3):246-255. doi: 10.1124/jpet.122.001265. Epub 2022 Jul 2.
Aberrations in spinal glycinergic signaling are a feature of pain chronification. Normalizing these changes by inhibiting glycine transporter (GlyT)-2 is a promising treatment strategy. However, existing GlyT2 inhibitors (e.g., ORG25543) are limited by narrow therapeutic windows and severe dose-limiting side effects, such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterized in mouse models of acute (hot plate), inflammatory (complete Freund's adjuvant), and chronic neuropathic (chronic constriction injury) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod), and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete antiallodynia for chronic neuropathic pain, but no antiallodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. SIGNIFICANCE STATEMENT: Partially inhibiting glycine transporter (GlyT)-2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor ol-D-lys is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.
Recommended Products
BBF-03428 | Tubermycin B | Inquiry |
BBF-05880 | N-Me-L-Ala-maytansinol | Inquiry |
BBF-03516 | (±)-Naringenin | Inquiry |
BBF-03800 | Moxidectin | Inquiry |
BBF-04609 | 1,1-Dimethylbiguanide hydrochloride | Inquiry |
BBF-05818 | Docosahexaenoic acid | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳