D-Ornithine

D-Ornithine

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-04711
CAS 348-66-3
Molecular Weight 132.16
Molecular Formula C5H12N2O2

Online Inquiry

Specification

Synonyms (R)-ornithine
IUPAC Name (2R)-2,5-diaminopentanoic acid
Canonical SMILES C(CC(C(=O)O)N)CN
InChI InChI=1S/C5H12N2O2/c6-3-1-2-4(7)5(8)9/h4H,1-3,6-7H2,(H,8,9)/t4-/m1/s1
InChI Key AHLPHDHHMVZTML-SCSAIBSYSA-N

Properties

Boiling Point 308.7±32.0°C (Predicted)
Melting Point 140°C
Density 1.165±0.06 g/cm3 (Predicted)

Reference Reading

1. Steady-state and pre-steady state kinetic analysis of ornithine 4,5-aminomutase
Amanda L Darbyshire, Caitlyn Makins, Kirsten R Wolthers Methods Enzymol. 2022;669:173-195. doi: 10.1016/bs.mie.2021.11.016. Epub 2021 Dec 23.
Ornithine 4,5-aminomutase (4,5-OAM) is a pyridoxal 5'-phosphate and adenosylcobalamin-dependent enzyme that catalyzes a 1,2-rearrangement of the terminal amine of d-ornithine to form (2R, 4S)-diaminopentanoate. The gene encoding ornithine 4,5-aminomutase is clustered with other genes that function in the oxidative l-ornithine metabolic pathway present in a number of anaerobic bacteria. This chapter discusses the methodology for measuring 4,5-OAM activity using NAD+-dependent diaminopentanoate dehydrogenase, which functions downstream of 4,5-OAM in the l-ornithine metabolic pathway. The use of ornithine racemace, which functions upstream of 4,5-OAM, for the synthesis of d,l-ornithine-3,3,4,4,5,5-d6 is also presented. Finally, this chapter describes the anaerobic stopped-flow spectrophotometric analysis of 4,5-OAM. Information is provided on the integration of a stopped-flow system in the anaerobically-maintained glove, the preparation of anaerobic solutions, and the experimental approach.
2. The Y430F mutant of Salmonella d-ornithine/d-lysine decarboxylase has altered stereospecificity and a putrescine allosteric activation site
Robert S Phillips, Kim-Ngoc Nguyen Hoang Arch Biochem Biophys. 2022 Nov 30;731:109429. doi: 10.1016/j.abb.2022.109429. Epub 2022 Oct 18.
Tyrosine-430 of d-ornithine/d-lysine decarboxylase (DOKDC) is located in the active site, and was suggested to be responsible for the D-stereospecificity of the enzyme. We have prepared the Y430F mutant form of Salmonella enterica serovar typhimurium DOKDC and evaluated its catalytic activity with D- and l-lysine and ornithine. The kinetic results show that the Y430F mutant has measurable decarboxylase activity with both D- and l-lysine and ornithine, which wild type DOKDC does not. Spectroscopic experiments show that these amino acids bind to form external aldimine complexes with the pyridoxal-5'-phosphate with λmax = 425 nm. In addition, we have obtained crystal structures of Y430F DOKDC bound to HEPES, putrescine, d-ornithine, d-lysine, and d-arginine. The d-amino acids bind in the crystals to form equilibrium mixtures of gem-diamine and external aldimine complexes. Furthermore, the crystal structures reveal an unexpected allosteric product activator site for putrescine located on the 2-fold axis between the two active sites. Putrescine binds by donating hydrogen bonds from the ammonium groups to Asp-361 and Gln-358 in the specificity helix of both chains. Addition of 0.1-1 mM putrescine eliminates the lag in steady state kinetics and abolishes the sigmoid kinetics. The catalytic loop was modeled with AlphaFold2, and the model shows that Glu-181 can form additional hydrogen bonds with the bound putrescine, likely stabilizing the catalytic closed conformation.
3. Serum Metabolic Profiles of Chinese Women With Perimenopausal Obesity Explored by the Untargeted Metabolomics Approach
Shanshan Ding, Mingyi Chen, Ying Liao, Qiliang Chen, Xuejuan Lin, Shujiao Chen, Yujuan Chai, Candong Li, Tetsuya Asakawa Front Endocrinol (Lausanne). 2021 Sep 24;12:637317. doi: 10.3389/fendo.2021.637317. eCollection 2021.
By far, no study has focused on observing the metabolomic profiles in perimenopause-related obesity. This study attempted to identify the metabolic characteristics of subjects with perimenopause obesity (PO). Thirty-nine perimenopausal Chinese women, 21 with PO and 18 without obesity (PN), were recruited in this study. A conventional ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QTOF/MS) followed by principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used as untargeted metabolomics approaches to explore the serum metabolic profiles. Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst were used to identify the related metabolic pathways. A total of 46 differential metabolites, along with seven metabolic pathways relevant to PO were identified, which belonged to lipid, amino acids, carbohydrates, and organic acids. As for amino acids, we found a significant increase in l-arginine and d-ornithine in the positive ion (POS) mode and l-leucine, l-valine, l-tyrosine, and N-acetyl-l-tyrosine in the negative ion (NEG) mode and a significant decrease in l-proline in the POS mode of the PO group. We also found phosphatidylcholine (PC) (16:0/16:0), palmitic acid, and myristic acid, which are associated with the significant upregulation of lipid metabolism. Moreover, the serum indole lactic acid and indoleacetic acid were upregulated in the NEG mode. With respect to the metabolic pathways, the d-arginine and d-ornithine metabolisms and the arginine and proline metabolism pathways in POS mode were the most dominant PO-related pathways. The changes of metabolisms of lipid, amino acids, and indoleacetic acid provided a pathophysiological scenario for Chinese women with PO. We believe that the findings of this study are helpful for clinicians to take measures to prevent the women with PO from developing severe incurable obesity-related complications, such as cardiovascular disease and stroke.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket