Daptomycin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Daptomycin
Category New Products
Catalog number BBF-03791
CAS 103060-53-3
Molecular Weight 1620.69
Molecular Formula C72H101N17O26
Purity >95%

Ordering Information

Catalog Number Size Price Stock Quantity
BBF-03791 1 g $259 In stock

Online Inquiry

Add to cart

Description

Daptomycin is a lipopeptide antibiotic produced by the soil saprotroph Streptomyces roseosporus. It is used to treat systemic infections and life-threatening infections caused by gram-positive organisms.

Specification

Synonyms LY 146032; LY-146032; LY146032; Daptomycin; Cidecin; Cubicin; (2S)-daptomycin
Sequence WNDTGKDADGSEY
Storage Store at -20°C
IUPAC Name (3S)-3-[[(2S)-4-amino-2-[[(2S)-2-(decanoylamino)-3-(1H-indol-3-yl)propanoyl]amino]-4-oxobutanoyl]amino]-4-[[(3S,6S,9R,15S,18R,21S,24S,30S,31R)-3-[2-(2-aminophenyl)-2-oxoethyl]-24-(3-aminopropyl)-15,21-bis(carboxymethyl)-6-[(2R)-1-carboxypropan-2-yl]-9-(hydroxymethyl)-18,31-dimethyl-2,5,8,11,14,17,20,23,26,29-decaoxo-1-oxa-4,7,10,13,16,19,22,25,28-nonazacyclohentriacont-30-yl]amino]-4-oxobutanoic acid
Canonical SMILES CCCCCCCCCC(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)O)C(=O)NC3C(OC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC3=O)CCCN)CC(=O)O)C)CC(=O)O)CO)C(C)CC(=O)O)CC(=O)C4=CC=CC=C4N)C
InChI InChI=1S/C72H101N17O26/c1-5-6-7-8-9-10-11-22-53(93)81-44(25-38-31-76-42-20-15-13-17-39(38)42)66(108)84-45(27-52(75)92)67(109)86-48(30-59(102)103)68(110)89-61-37(4)115-72(114)49(26-51(91)40-18-12-14-19-41(40)74)87-71(113)60(35(2)24-56(96)97)88-69(111)50(34-90)82-55(95)32-77-63(105)46(28-57(98)99)83-62(104)36(3)79-65(107)47(29-58(100)101)85-64(106)43(21-16-23-73)80-54(94)33-78-70(61)112/h12-15,17-20,31,35-37,43-50,60-61,76,90H,5-11,16,21-30,32-34,73-74H2,1-4H3,(H2,75,92)(H,77,105)(H,78,112)(H,79,107)(H,80,94)(H,81,93)(H,82,95)(H,83,104)(H,84,108)(H,85,106)(H,86,109)(H,87,113)(H,88,111)(H,89,110)(H,96,97)(H,98,99)(H,100,101)(H,102,103)/t35-,36-,37-,43+,44+,45+,46+,47+,48+,49+,50-,60+,61+/m1/s1
InChI Key DOAKLVKFURWEDJ-RWDRXURGSA-N
Source Streptomyces sp.

Properties

Appearance Solid Powder
Application Anti-Bacterial Agents
Antibiotic Activity Spectrum Gram-positive bacteria
Boiling Point 2078.2°C at 760 mmHg
Melting Point >165°C (dec.)
Flash Point 1210.7°C
Density 1.45 g/cm3
Solubility Soluble in ethanol, methanol, DMF,DMSO
LogP 0.88280

Reference Reading

1. A combined solid- and solution-phase approach provides convenient access to analogues of the calcium-dependent lipopeptide antibiotics
Petert Hart, Laurens H. J. Kleijn, Nathaniel I. Martin*. Org. Biomol. Chem.,2014, 12,913–918
The accelerated appearance of antibiotic resistance presents a serious and growing global health risk. Despite the increasing need for new antibacterial agents, only two mechanistically and structurally new antibiotics have reached the clinic in the past 40 years: linezolid and daptomycin. While linezolid is of synthetic origin, daptomycin (Fig. 1) is a natural product isolated from fermentations of Streptomyces roseosporus. Daptomycin is rapidly bactericidal against Staphylococcusaureus, including methicillin-resistant S. aureus (MRSA), vanco-mycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) strains. Marketed under the trade name Cubicin, daptomycin is the first lipopeptide antibiotic of its kind to be approved for clinical use. Structurally unique, daptomycin is a cyclic depsipeptide composed of 13 amino acids (including non-proteinogenic and D-amino acids) and bears an N-terminal 10-carbon lipophilic tail.
2. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin
Biswajit Mishra, Tamara Lushnikova and Guangshun Wang*. RSC Adv.,2015, 5,59758–59769
Although these are the current drugs used for biofilm related infections, there are serious concerns. Daptomycin, which acts on the bacterial membrane in a calcium dependent manner, has been shown to have reduced susceptibility to a variety ofMRSA strains and is also proved ineffective in biofilm-related and deep seated infections. Likewise, bacterial developmentofresistancetovancomycinisnotableduetothe emergence of vancomycin intermediate S. aureus (VISA) and vancomycin-resistant Enterococci (VRE) strains. Moreover, a combined pharmacodynamic qualitative and quantitative S. aureus biofilm model shows the failure of vancomycin against mature MRSA biofilms. In addition, vancomycin was also ineffective after one day against biofilm formed by catheter associated MRSA. Several therapeutic procedures have been recorded failure for daptomycin/vancomycin therapy in MRSA and susceptible S. aureus clinical isolates that are not susceptible to daptomycin. In addition, the newest antibiotics talavancin shows renal failure and teratogenic effects. All these facts imply that we are running short of potent antimicrobials. Thus, it is urgent to search for new options.
3. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides
Marie-Paule Mingeot-Leclercqa and Jean-Luc Décout. Med. Chem. Commun.,2016, 7,586–611
In addition to the critical role of charges for cell bacterial physiology, it is obvious that negatively-charged lipids are critical for the action of membrane-active antibiotics including e.g. daptomycin, dalbavancin, polymyxins. First, negatively-charged lipids like PG and CL are critical for the ability of daptomycin to oligomerize inside of the bacterial cell membrane and to form oligomeric transmembrane pores induced by the daptomycin–calcium complexes. Second, ionic character as observed after derivatization or conversion of the carboxy group into an ester, amide or hydrazide highly modulates the relative activity of teicoplanin-type glycopeptides like dalbavancin, especially against coagulase negative Staphylococcus.
4. Natural products to drugs: daptomycin and related lipopeptide antibiotics
Richard H. Baltz,* Vivian Miao and Stephen K. Wrigley. Nat. Prod. Rep. , 2005, 22 , 717–741
Daptomycin (CubicinR ) is a cyclic lipopeptide antibiotic approved in the USA in 2003 for the treatment of skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is produced by fermentation of Streptomyces roseosporus. S. roseosporus normally produces a complex of lipopeptides (A21978C) with different long-chain fatty acid tails; daptomycin, a member of the A21978C complex that contains a straight C10 lipid side-chain, is produced in quantity by feeding decanoic acid during fermentation. The peptide portion of daptomycin contains 13 amino acids, including three with D-stereochemistry. The cyclic portion contains 10 residues linked by an ester bond between the terminal kynurenine (Kyn) and the hydroxyl group of Thr.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2025 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket