Ferrimycin A1

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Ferrimycin A1
Category Antibiotics
Catalog number BBF-00916
CAS 15319-50-3
Molecular Weight 977.86
Molecular Formula C41H65FeN10O14

Online Inquiry

Description

Ferrimycin is an iron-containing peptide antibiotic produced by Streptornyces griseoflavus. It has anti-Gram-positive bacteria activity and weak anti-Gram-negative bacteria activity.

Specification

IUPAC Name iron(3+);methyl 6-[3-[5-[[4-[5-[[4-[5-[acetyl(oxido)amino]pentylamino]-4-oxobutanoyl]-oxidoamino]pentylamino]-4-oxobutanoyl]-oxidoamino]pentylcarbamoyl]-5-hydroxyanilino]-4-amino-5-hydroxy-5-(hydroxymethyl)-6-methyl-2-oxopiperidine-3-carboximidate
Canonical SMILES CC(=O)N(CCCCCNC(=O)CCC(=O)N(CCCCCNC(=O)CCC(=O)N(CCCCCNC(=O)C1=CC(=CC(=C1)O)NC2(C(C(C(C(=O)N2)C(=N)OC)N)(CO)O)C)[O-])[O-])[O-].[Fe+3]
InChI InChI=1S/C41H65N10O14.Fe/c1-27(53)49(62)20-10-4-7-17-44-31(55)13-15-33(57)50(63)21-11-5-8-18-45-32(56)14-16-34(58)51(64)22-12-6-9-19-46-38(59)28-23-29(25-30(54)24-28)47-40(2)41(61,26-52)36(42)35(37(43)65-3)39(60)48-40;/h23-25,35-36,43,47,52,54,61H,4-22,26,42H2,1-3H3,(H,44,55)(H,45,56)(H,46,59)(H,48,60);/q-3;+3
InChI Key NQVNPJGERCVAPV-UHFFFAOYSA-N

Properties

Appearance Orange Powder

Reference Reading

1. Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) in Erwinia herbicola (Enterobacter agglomerans)
I Berner, G Winkelmann Biol Met. 1990;2(4):197-202. doi: 10.1007/BF01141359.
Iron deprivation of Erwinia herbicola (Enterobacter agglomerans) induces the biosynthesis of six high-Mr outer-membrane proteins and large amounts of ferrioxamine E. Mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection with ferrimycin A yielded mutants of E. herbicola K4 (wild type), defective in the expression of a 76-kDa outer-membrane protein, as determined by SDS/polyacrylamide gel electrophoresis. While in bioassays wild-type cells showed growth promotion in the presence of ferrioxamines (B, D1, D2, E, G), enterobactin, citrate, ferrichrome and coprogen, these mutants failed to respond to ferrioxamines. Moreover, experiments with 55Fe-labelled siderophores confirmed that iron transport mediated by ferrioxamine E and B in the mutants was completely inhibited, whereas iron transport by other hydroxamate siderophores, such as ferrichrome and coprogen was unaffected. The results are evidence that the 76-kDa protein in the outer membrane represents the receptor protein (FoxA) for ferrioxamines in E. herbicola.
2. Novel whole-cell antibiotic biosensors for compound discovery
Andreas Urban, Stefan Eckermann, Beate Fast, Susanne Metzger, Matthias Gehling, Karl Ziegelbauer, Helga Rübsamen-Waigmann, Christoph Freiberg Appl Environ Microbiol. 2007 Oct;73(20):6436-43. doi: 10.1128/AEM.00586-07. Epub 2007 Aug 24.
Cells containing reporters which are specifically induced via selected promoters are used in pharmaceutical drug discovery and in environmental biology. They are used in screening for novel drug candidates and in the detection of bioactive compounds in environmental samples. In this study, we generated and validated a set of five Bacillus subtilis promoters fused to the firefly luciferase reporter gene suitable for cell-based screening, enabling the as yet most-comprehensive high-throughput diagnosis of antibiotic interference in the major biosynthetic pathways of bacteria: the biosynthesis of DNA by the yorB promoter, of RNA by the yvgS promoter, of proteins by the yheI promoter, of the cell wall by the ypuA promoter, and of fatty acids by the fabHB promoter. The reporter cells mainly represent novel antibiotic biosensors compatible with high-throughput screening. We validated the strains by developing screens with a set of 14,000 pure natural products, representing a source of highly diverse chemical entities, many of them with antibiotic activity (6% with anti-Bacillus subtilis activity of

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket