Gramicidin A
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-01801 |
CAS | 11029-61-1 |
Molecular Weight | 1882.29 |
Molecular Formula | C99H140N20O17 |
Purity | ≥90% |
Online Inquiry
Description
It is produced by the strain of Bacillus brevis. It mainly has anti-gram-positive bacterial activity, and also has effects on Naisseria. LD50 is 0.017 mg/kg (mice, intravenous injection).
Specification
Synonyms | Valinegramicidin A; Valyl gramicidin A; 1-L-Valinegramicidin A; L-Tryptophanamide, N-formyl-L-valylglycyl-L-alanyl-D-leucyl-L-alanyl-D-valyl-L-valyl-D-valyl-L-tryptophyl-D-leucyl-L-tryptophyl-D-leucyl-L-tryptophyl-D-leucyl-N-(2-hydroxyethyl)- |
Sequence | VGALAVVVWLWLWLW |
Storage | 2-8 °C |
IUPAC Name | (2R)-2-[[(2S)-2-[[2-[[(2S)-2-formamido-3-methylbutanoyl]amino]acetyl]amino]propanoyl]amino]-N-[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-(2-hydroxyethylamino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]-4-methylpentanamide |
Canonical SMILES | CC(C)CC(C(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CC(C)C)C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)NC(CC(C)C)C(=O)NC(CC5=CNC6=CC=CC=C65)C(=O)NC(CC(C)C)C(=O)NC(CC7=CNC8=CC=CC=C87)C(=O)NCCO)NC(=O)C(C)NC(=O)CNC(=O)C(C(C)C)NC=O |
InChI | InChI=1S/C99H140N20O17/c1-51(2)37-73(109-86(123)59(17)107-81(122)49-105-96(133)82(55(9)10)106-50-121)89(126)108-60(18)87(124)117-84(57(13)14)98(135)119-85(58(15)16)99(136)118-83(56(11)12)97(134)116-80(44-64-48-104-72-34-26-22-30-68(64)72)95(132)112-76(40-54(7)8)92(129)115-79(43-63-47-103-71-33-25-21-29-67(63)71)94(131)111-75(39-53(5)6)91(128)114-78(42-62-46-102-70-32-24-20-28-66(62)70)93(130)110-74(38-52(3)4)90(127)113-77(88(125)100-35-36-120)41-61-45-101-69-31-23-19-27-65(61)69/h19-34,45-48,50-60,73-80,82-85,101-104,120H,35-44,49H2,1-18H3,(H,100,125)(H,105,133)(H,106,121)(H,107,122)(H,108,126)(H,109,123)(H,110,130)(H,111,131)(H,112,132)(H,113,127)(H,114,128)(H,115,129)(H,116,134)(H,117,124)(H,118,136)(H,119,135)/t59-,60-,73+,74+,75+,76+,77-,78-,79-,80-,82-,83+,84+,85-/m0/s1 |
InChI Key | ZWCXYZRRTRDGQE-LUPIJMBPSA-N |
Properties
Appearance | White to Off-White Solid |
Antibiotic Activity Spectrum | Gram-positive bacteria |
Melting Point | 229-230 °C (dec.) |
Solubility | Soluble in low Alcohol, Dioxane, Acetone; Insoluble in Water |
Reference Reading
1. Gramicidin A Channel Formation Induces Local Lipid Redistribution II: A 3D Continuum Elastic Model
Andrew H Beaven, Alexander J Sodt, Richard W Pastor, Wonpil Im, Olaf S Andersen Biophys J . 2017 Mar 28;112(6):1198-1213. doi: 10.1016/j.bpj.2017.01.035.
To change conformation, a protein must deform the surrounding bilayer. In this work, a three-dimensional continuum elastic model for gramicidin A in a lipid bilayer is shown to describe the sensitivity to thickness, curvature stress, and the mechanical properties of the lipid bilayer. A method is demonstrated to extract the gramicidin-lipid boundary condition from all-atom simulations that can be used in the three-dimensional continuum model. The boundary condition affects the deformation dramatically, potentially much more than typical variations in the material stiffness do as lipid composition is changed. Moreover, it directly controls the sensitivity to curvature stress. The curvature stress and hydrophobic surfaces of the all-atom and continuum models are found to be in excellent agreement. The continuum model is applied to estimate the enrichment of hydrophobically matched lipids near the channel in a mixture, and the results agree with single-channel experiments and extended molecular dynamics simulations from the companion article by Beaven et al. in this issue of Biophysical Journal.
2. Structure of gramicidin A
B A Wallace Biophys J . 1986 Jan;49(1):295-306. doi: 10.1016/S0006-3495(86)83642-6.
Gramicidin A, a hydrophobic linear polypeptide, forms channels in phospholipid membranes that are specific for monovalent cations. Nuclear Magnetic Resonance (NMR) spectroscopy provided the first direct physical evidence that the channel conformation in membranes is an amino terminal-to-amino terminal helical dimer, and circular dichroism (CD) spectroscopy has shown the sensitivity of its conformation to different environments and the structural consequences of ion binding. The three-dimensional structure of a gramicidin/cesium complex has been determined by x-ray diffraction of single crystals using single wavelength anomalous scattering for phasing. The left-handed double helix in this crystal form corresponds to one of the intermediates in the process of folding and insertion into membranes. Co-crystals of gramicidin and lipid that appear to have gramicidin in their membrane channel conformation have also been formed and are presently under investigation. Hence, we have used a combination of spectroscopic and diffraction techniques to examine the conformation and functionally-related structural features of gramicidin A.
3. The Effect of Calcium and Halide Ions on the Gramicidin A Molecular State and Antimicrobial Activity
Der-Lii M Tzou, Yi-Hung Lin, Shang-Ting Fang, Kathleen D Carillo, Shu-Hsiang Huang, Yi-Cheng Chen, Chi-Jen Lo Int J Mol Sci . 2020 Aug 27;21(17):6177. doi: 10.3390/ijms21176177.
Gramicidin A (gA) forms several convertible conformations in different environments. In this study, we investigated the effect of calcium halides on the molecular state and antimicrobial activity of gramicidin A. The molecular state of gramicidin A is highly affected by the concentration of calcium salt and the type of halide anion. Gramicidin A can exist in two states that can be characterized by circular dichroism (CD), mass, nuclear magnetic resonance (NMR) and fluorescence spectroscopy. In State 1, the main molecular state of gramicidin A is as a dimer, and the addition of calcium salt can convert a mixture of four species into a single species, which is possibly a left-handed parallel double helix. In State 2, the addition of calcium halides drives gramicidin A dissociation and denaturation from a structured dimer into a rapid equilibrium of structured/unstructured monomer. We found that the abilities of dissociation and denaturation were highly dependent on the type of halide anion. The dissociation ability of calcium halides may play a vital role in the antimicrobial activity, as the structured monomeric form had the highest antimicrobial activity. Herein, our study demonstrated that the molecular state was correlated with the antimicrobial activity.
Recommended Products
BBF-03516 | (±)-Naringenin | Inquiry |
BBF-05818 | Docosahexaenoic acid | Inquiry |
BBF-05886 | Notoginsenoside R1 | Inquiry |
BBF-05880 | N-Me-L-Ala-maytansinol | Inquiry |
BBF-01825 | Loganin | Inquiry |
BBF-01737 | Cordycepin | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳