1. Crystal structures of adenylosuccinate synthetase from Escherichia coli complexed with GDP, IMP hadacidin, NO3-, and Mg2+
B W Poland, H J Fromm, R B Honzatko J Mol Biol. 1996 Dec 20;264(5):1013-27. doi: 10.1006/jmbi.1996.0693.
Crystal structures of adenylosuccinate synthetase from Esherichia coli complexed with Mg2+, IMP, GDP, NO3- and hadacidin at 298 and 100 K have been refined to R-factors of 0.188 and 0.206 against data to 2.8 A and 2.5 A resolution, respectively. Conformational changes of up to 9 A relative to the unligated enzyme occur in loops that bind to Mg2+, GDP, IMP and hadacidin. Mg2+ binds directly to GDP, NO3-, hadacidin and the protein, but is only five-coordinated. Asp13, which approaches, but does not occupy the sixth coordination site of Mg2+, hydrogen bonds to N1 of IMP. The nitrogen atom of NO3- is approximately 2.7 A from O6 of IMP, reflecting a strong electrostatic interaction between the electron-deficient nitrogen atom and the electron-rich O6. The spatial relationships between GDP, NO3- and Mg2+ suggest an interaction between the beta,gamma-bridging oxygen atom of GTP and Mg2+ in the enzyme-substrate complex. His41 hydrogen bonds to the beta-phosphate group of GDP and approaches bound NO3-. The aldehyde group of hadacidin coordinates to the Mg2+, while its carboxyl group interacts with backbone amide groups 299 to 303 and the side-chain of Arg303. The 5'-phosphate group of IMP interacts with Asn38, Thr129, Thr239 and Arg143 (from a monomer related by 2-fold symmetry). A mechanism is proposed for the two-step reaction governed by the synthetase, in which His41 and Asp13 are essential catalytic side-chains.
2. Genesis of hadacidin-induced cleft palate in hamster: morphogenesis, electron microscopy, and determination of DNA synthesis, cAMP, and enzyme acid phosphatase
R M Shah, R Schuing, G Benkhaial, A V Young, D Burdett Am J Anat. 1991 Sep;192(1):55-68. doi: 10.1002/aja.1001920107.
A morphological, electron microscopic, and biochemical study was undertaken to analyze the genesis of hadacidin-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that hadacidin affected the growth of vertical palatal shelves to induce cleft palate. Electron microscopic observations showed that initial hadacidin-induced changes were seen in the mesenchymal cells. Within 12 hr of drug administration, the perinuclear space was swollen and a lysosomal response injury was evident in the mesenchymal cells. Subsequently, 24 hr after hadacidin treatment, lysosomes appeared in the epithelial cells; changes were also seen in the basal lamina which included separation of the lamina densa from the basal cells, duplication of lamina densa, and complete loss of basal lamina. Between 36 and 42 hr post-treatment, the cellular and basal lamina changes subsided, and the epithelium of vertical shelves underwent stratification. Biochemical determination of enzyme acid phosphatase indicated that the levels of enzyme activity in both the control and treated palatal tissues corresponded to the appearance of lysosomes. Measurement of cAMP levels suggested that the peak activity of cAMP corresponded to that of enzyme acid phosphatase and cell injury. The cAMP activity in hadacidin-injured cells, however, was significantly lower in comparison to that of the dying cells of control palates. Hadacidin treatment also affected DNA synthesis in the developing primordia of the palate. It was suggested that hadacidin injures the precursor cells of the palate prior to the appearance of the primordia, and subsequently affects their proliferative behavior, stunting the vertical growth of the palatal shelves and inducing a cleft palate.
3. Evaluation of hadacidin analogues
Nidhi Tibrewal, Gregory I Elliott Bioorg Med Chem Lett. 2011 Jan 1;21(1):517-9. doi: 10.1016/j.bmcl.2010.10.088. Epub 2010 Oct 30.
Several derivatives of hadacidin have been developed and evaluated for activity against adenylosuccinate synthetase.