1. Synthesis and biological evaluation of epidithio-, epitetrathio-, and bis-(methylthio)diketopiperazines: synthetic methodology, enantioselective total synthesis of epicoccin G, 8,8'-epi-ent-rostratin B, gliotoxin, gliotoxin G, emethallicin E, and haematocin and discovery of new antiviral and antimalarial agents
K C Nicolaou, Min Lu, Sotirios Totokotsopoulos, Philipp Heretsch, Denis Giguère, Ya-Ping Sun, David Sarlah, Thu H Nguyen, Ian C Wolf, Donald F Smee, Craig W Day, Selina Bopp, Elizabeth A Winzeler J Am Chem Soc. 2012 Oct 17;134(41):17320-32. doi: 10.1021/ja308429f. Epub 2012 Oct 4.
An improved sulfenylation method for the preparation of epidithio-, epitetrathio-, and bis-(methylthio)diketopiperazines from diketopiperazines has been developed. Employing NaHMDS and related bases and elemental sulfur or bis[bis(trimethylsilyl)amino]trisulfide (23) in THF, the developed method was applied to the synthesis of a series of natural and designed molecules, including epicoccin G (1), 8,8'-epi-ent-rostratin B (2), gliotoxin (3), gliotoxin G (4), emethallicin E (5), and haematocin (6). Biological screening of selected synthesized compounds led to the discovery of a number of nanomolar antipoliovirus agents (i.e., 46, 2,2'-epi-46, and 61) and several low-micromolar anti- Plasmodium falciparum lead compounds (i.e., 46, 2,2'-epi-46, 58, 61, and 1).
2. Preparative separation of sulfur-containing diketopiperazines from marine fungus Cladosporium sp. using high-speed counter-current chromatography in stepwise elution mode
Binbin Gu, Yanying Zhang, Lijian Ding, Shan He, Bin Wu, Junde Dong, Peng Zhu, Juanjuan Chen, Jinrong Zhang, Xiaojun Yan Mar Drugs. 2015 Jan 9;13(1):354-65. doi: 10.3390/md13010354.
High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products.
3. A Unified Strategy to 6-5-6-5-6-Membered Epipolythiodiketopiperazines: Studies towards the Total Synthesis of Scabrosin Diacetate and Haematocin
Hannes F Zipfel, Erick M Carreira Chemistry. 2015 Aug 24;21(35):12475-80. doi: 10.1002/chem.201500918. Epub 2015 Jul 14.
The family of epipolythiodiketopiperazine (ETP) natural products consists of over 200 members possessing a wide diversity of structures and biological activity. Recently, the subgroup of 6-5-6-5-6-membered ETPs has gained substantial attention, which has resulted in several total syntheses. Despite all the efforts that have been invested into accessing these complex structures, no synthesis of scabrosin diacetate (1 a) and its related esters has been reported. Herein, our attempts towards scabrosin diacetate (1 a) and haematocin (3) starting from diketopiperazine 12 a as a late-stage intermediate are presented. Diketopiperazine 12 a can be conveniently accessed in multigram quantities from aldehyde 18 and diketopiperazine 21 and was envisioned to serve as a general platform for the synthesis of 6-5-6-5-6-membered ETPs.