Korormicin

Korormicin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-01553
CAS
Molecular Weight 433.58
Molecular Formula C25H39NO5

Online Inquiry

Description

It has the effect of resisting Marine gram-negative bacteria, but not against the marine gram-positive bacteria and general bacteria.

Specification

Synonyms (3R,4Z,6E)-N-[(5S)-5-Ethyl-5-methyl-2-oxo-2,5-dihydro-3-furanyl]-3-hydroxy-8-[(2S,3R)-3-octyl-2-oxiranyl]-4,6-octadienamid
IUPAC Name (4Z,6E)-N-(5-ethyl-5-methyl-2-oxofuran-3-yl)-3-hydroxy-8-(3-octyloxiran-2-yl)octa-4,6-dienamide
Canonical SMILES CCCCCCCCC1C(O1)CC=CC=CC(CC(=O)NC2=CC(OC2=O)(C)CC)O
InChI InChI=1S/C25H39NO5/c1-4-6-7-8-9-12-15-21-22(30-21)16-13-10-11-14-19(27)17-23(28)26-20-18-25(3,5-2)31-24(20)29/h10-11,13-14,18-19,21-22,27H,4-9,12,15-17H2,1-3H3,(H,26,28)/b13-10+,14-11-
InChI Key OXOAWIMFJLEQMT-MBGGJNPXSA-N

Properties

Appearance Colorless Oily Matter
Antibiotic Activity Spectrum Gram-negative bacteria
Boiling Point 649.3±55.0 °C at 760 mmHg
Density 1.1±0.1 g/cm3

Reference Reading

1. Specific chemical modification explores dynamic structure of the NqrB subunit in Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae
Moe Ishikawa, Takahiro Masuya, Hinako Tanaka, Wataru Aoki, Noam Hantman, Nicole L Butler, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi Biochim Biophys Acta Bioenerg. 2021 Aug 1;1862(8):148432. doi: 10.1016/j.bbabio.2021.148432. Epub 2021 Apr 28.
The Na+-pumping NADH-ubiquinone oxidoreductase (Na+-NQR) is a main ion transporter in many pathogenic bacteria. We previously proposed that N-terminal stretch of the NqrB subunit plays an important role in regulating the ubiquinone reaction at the adjacent NqrA subunit in Vibrio cholerae Na+-NQR. However, since approximately three quarters of the stretch (NqrB-Met1-Pro37) was not modeled in an earlier crystallographic study, its structure and function remain unknown. If we can develop a method that enables pinpoint modification of this stretch by functional chemicals (such as spin probes), it could lead to new ways to investigate the unsettled issues. As the first step to this end, we undertook to specifically attach an alkyne group to a lysine located in the stretch via protein-ligand affinity-driven substitution using synthetic ligands NAS-K1 and NAS-K2. The alkyne, once attached, can serve as an "anchor" for connecting functional chemicals via convenient click chemistry. After a short incubation of isolated Na+-NQR with these ligands, alkyne was predominantly incorporated into NqrB. Proteomic analyses in combination with mutagenesis of predicted target lysines revealed that alkyne attaches to NqrB-Lys22 located at the nonmodeled region of the stretch. This study not only achieved the specific modification initially aimed for but also provided valuable information about positioning of the nonmodeled region. For example, the fact that hydrophobic NAS-Ks come into contact with NqrB-Lys22 suggests that the nonmodeled region may orient toward the membrane phase rather than protruding into cytoplasmic medium. This conformation may be essential for regulating the ubiquinone reaction in the adjacent NqrA.
2. Antibiotic Korormicin A Kills Bacteria by Producing Reactive Oxygen Species
Adam Maynard, Nicole L Butler, Takeshi Ito, Adilson José da Silva, Masatoshi Murai, Tsute Chen, Mattheos A G Koffas, Hideto Miyoshi, Blanca Barquera J Bacteriol. 2019 May 8;201(11):e00718-18. doi: 10.1128/JB.00718-18. Print 2019 Jun 1.
Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.
3. Inhibitors of a Na+-pumping NADH-ubiquinone oxidoreductase play multiple roles to block enzyme function
Takahiro Masuya, Yuki Sano, Hinako Tanaka, Nicole L Butler, Takeshi Ito, Tatsuhiko Tosaki, Joel E Morgan, Masatoshi Murai, Blanca Barquera, Hideto Miyoshi J Biol Chem. 2020 Sep 4;295(36):12739-12754. doi: 10.1074/jbc.RA120.014229. Epub 2020 Jul 20.
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is present in the respiratory chain of many pathogenic bacteria and is thought to be a promising antibiotic target. Whereas many details of Na+-NQR structure and function are known, the mechanisms of action of potent inhibitors is not well-understood; elucidating the mechanisms would not only advance drug design strategies but might also provide insights on a terminal electron transfer from riboflavin to UQ. To this end, we performed photoaffinity labeling experiments using photoreactive derivatives of two known inhibitors, aurachin and korormicin, on isolated Vibrio cholerae Na+-NQR. The inhibitors labeled the cytoplasmic surface domain of the NqrB subunit including a protruding N-terminal stretch, which may be critical to regulate the UQ reaction in the adjacent NqrA subunit. The labeling was blocked by short-chain UQs such as ubiquinone-2. The photolabile group (2-aryl-5-carboxytetrazole (ACT)) of these inhibitors reacts with nucleophilic amino acids, so we tested mutations of nucleophilic residues in the labeled region of NqrB, such as Asp49 and Asp52 (to Ala), and observed moderate decreases in labeling yields, suggesting that these residues are involved in the interaction with ACT. We conclude that the inhibitors interfere with the UQ reaction in two ways: the first is blocking structural rearrangements at the cytoplasmic interface between NqrA and NqrB, and the second is the direct obstruction of UQ binding at this interfacial area. Unusual competitive behavior between the photoreactive inhibitors and various competitors corroborates our previous proposition that there may be two inhibitor binding sites in Na+-NQR.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket