L-Glutamine methyl ester

L-Glutamine methyl ester

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-04744
CAS 40846-98-8
Molecular Weight 160.17
Molecular Formula C6H12N2O3

Online Inquiry

Specification

Synonyms (S)-Methyl 2,5-diamino-5-oxopentanoate
IUPAC Name methyl (2S)-2,5-diamino-5-oxopentanoate
Canonical SMILES COC(=O)C(CCC(=O)N)N
InChI InChI=1S/C6H12N2O3/c1-11-6(10)4(7)2-3-5(8)9/h4H,2-3,7H2,1H3,(H2,8,9)/t4-/m0/s1
InChI Key GBDRMPRTNVKBAD-BYPYZUCNSA-N

Reference Reading

1. Synthesis and application of dipeptides; current status and perspectives
Makoto Yagasaki, Shin-ichi Hashimoto Appl Microbiol Biotechnol. 2008 Nov;81(1):13-22. doi: 10.1007/s00253-008-1590-3. Epub 2008 Sep 16.
The functions and applications of L-alpha-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as aspartame (L-aspartyl-L-phenylalanine methyl ester) and L-alanyl-L-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide synthesis including a nonribosomal peptide-synthetase-based method and an L-amino acid alpha-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of these two dipeptides are compared to clarify the characteristics of each procedure.
2. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis
Yoshinori Hirao, Yasuhiro Mihara, Ikuo Kira, Isao Abe, Kenzo Yokozeki Biosci Biotechnol Biochem. 2013;77(3):618-23. doi: 10.1271/bbb.120859. Epub 2013 Mar 7.
An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.
3. Screening of α-amino acid ester acyl transferase variant with improved activity by combining rational and random mutagenesis
Isao Abe, Uno Tagami, Tatsuki Kashiwagi, Masakazu Sugiyama, Shun-Ichi Suzuki, Hiroshi Takagi, Kenzo Yokozeki J Biochem. 2022 Dec 27;173(1):43-52. doi: 10.1093/jb/mvac083.
Random and rational mutagenesis of an α-amino acid ester acyl transferase from Sphingobacterium siyangensis AJ2458 (SAET) was conducted to examine the production of aspartame, an α-l-aspartyl-l-phenylalanine methyl ester. We previously reported aspartame production via combination of enzymatic and chemical methods. However, the productivity of the aspartame intermediate by SAET was approximately one-fifth that of l-alanyl-l-glutamine (Ala-Gln), whose production method has already been established. Here, to improve the enzymatic activity of SAET, we performed random mutagenesis in the gene encoding SAET and obtained 10 mutations that elevated the enzymatic activity (1.2- to 1.7-fold increase) relative to that of wild-type SAET. To further improve the activity, we performed mutagenesis to optimize the combination of the obtained mutations and finally selected one SAET variant with 10 amino acid substitutions (M35-4 SAET). An Escherichia coli strain overexpressing M35-4 SAET displayed a 5.7-fold higher activity than that of the wild-type SAET, which was almost equal to that of Ala-Gln by an E. coli strain overexpressing wild-type SAET. The Vmax value of M35-4 SAET was 2.0-fold greater, and its thermostability was higher than those of wild-type SAET. These results suggest that the obtained SAET variants contribute to improvement in aspartame production.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket