Moretenol

Moretenol

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Moretenol
Category Others
Catalog number BBF-04994
CAS 1678-31-5
Molecular Weight 426.72
Molecular Formula C30H50O

Online Inquiry

Specification

IUPAC Name (3R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bS)-5a,5b,8,8,11a,13b-hexamethyl-3-prop-1-en-2-yl-1,2,3,3a,4,5,6,7,7a,9,10,11,11b,12,13,13a-hexadecahydrocyclopenta[a]chrysen-9-ol
Canonical SMILES CC(=C)C1CCC2(C1CCC3(C2CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C)C
InChI InChI=1S/C30H50O/c1-19(2)20-11-15-27(5)21(20)12-17-29(7)23(27)9-10-24-28(6)16-14-25(31)26(3,4)22(28)13-18-30(24,29)8/h20-25,31H,1,9-18H2,2-8H3/t20-,21-,22-,23+,24+,25-,27-,28-,29+,30+/m0/s1
InChI Key LFPVZIIPFONRSW-UUKUQQAMSA-N

Reference Reading

1. Chemical Characterization, Antioxidant, Antimicrobial, Cytotoxicity and in Silico Studies of Hexane Extract and Essential Oils from Citrus limon Leaves
Muhammad Riaz, Rahman Qadir, Muhammad Tahir Akhtar, Muhammad Misbah Ur Rehman, Farooq Anwar, Rida Eman, Muhammad Fayyaz Ur Rehman, Muhammad Safwan Akram Chem Biodivers. 2023 Jan;20(1):e202200537. doi: 10.1002/cbdv.202200537. Epub 2022 Dec 30.
The present study investigates the chemical composition, antioxidant and antimicrobial bioactivities of essential oil and hexane extract from Citrus limon leaves. The isolation of essential oil was carried out using the Clevenger apparatus. The percentage yield of essential oil and hexane extract from Citrus limon leaves was 0.59 and 0.50 %, respectively. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging assay highlighted that Citrus limon leaves essential oil (CLEO) and hexane extract exhibited the significant antioxidant potential of 69.64 and 67.55 %, respectively, compared to the BHT standard. Similarly, a significant inhibition in linoleic acid peroxidation was recorded in both CLEO (81.93 %) and hexane extract (50.34 %). Characterization of chemical constituents in CLEO and extract was executed using GC/MS, where Limonene was detected as a major compound in CLEO (60.52 %) and hexane extract (73.62 %). The haemolytic activity ranged from 2.46 to 5.75 % revealing negligible cytotoxicity of CLEO and hexane extract. In silico studies agree with the in vitro antimicrobial studies, where vinimalol, taraxasterol, and moretenol present in CLEO showed strong interactions/inhibition against dihydroorotase and DNA gyrase from E. coli, and the tyrosyl-tRNA synthetase and DNA gyrase from S. aureus. Based on the current data, it may be concluded that both CLEO and hexane extract possessed significant bioactivities, such as antimicrobial and antioxidant activity, with minimal cytotoxicity.
2. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds
Mariana Z Pérez-González, Gabriel A Gutiérrez-Rebolledo, Lilián Yépez-Mulia, Irma S Rojas-Tomé, Julieta Luna-Herrera, María A Jiménez-Arellanes Biomed Pharmacother. 2017 May;89:89-97. doi: 10.1016/j.biopha.2017.02.021. Epub 2017 Feb 20.
Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl3:MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1H- and 13C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl3:MeOH extract showed antiprotozoal (IC50≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED50=1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC50≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E. histolytica and G. lamblia, showing IC50 ≤27.43μg/mL. As topical anti-inflammatory agents, moretenol and kaempferol-3,7-dimethyl ether were the most active compounds inhibiting the edema in 30.52 and 26.67%, respectively. Moretenol and moretenyl acetate showed significant antimycobacterial and antiprotozoal activities; in addition, important antiprotozoal effect was detected with kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxyflavanone. The extract and the terpenoids possess good anti-inflammatory activity. The extract did not produce lethality or adverse effects in acute and sub-acute tests.
3. Hepatoprotective and Anti-Inflammatory Activities of the Cnidoscolus chayamansa (Mc Vaugh) Leaf Extract in Chronic Models
Mariana Z Pérez-González, A Georgina Siordia-Reyes, Patricia Damián-Nava, Simón Hernández-Ortega, Martha L Macías-Rubalcava, María A Jiménez-Arellanes Evid Based Complement Alternat Med. 2018 Jul 25;2018:3896517. doi: 10.1155/2018/3896517. eCollection 2018.
Previous report described that CHCl3:MeOH extract of C. chayamansa leaves and pure compounds (moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone) showed important topical and systemic anti-inflammatory activity in acute model, as well as in vitro antimycobacterial and antiprotozoal activities. In this paper, we describe the in vivo hepatoprotective and anti-inflammatory effects of the CHCl3:MeOH extract in chronic model and the isolation of additional compounds (moretenone and lupeol acetate). The hepatoprotective activity was determined at 39 days using Balb/c mice with liver damage induced with an antitubercular drug (RIF/INH/PZA). The anti-inflammatory activity was evaluated in a chronic model induced with CFA and in two acute models (TPA and carrageenan). In addition, moretenone and lupeol acetate were isolated and identified by spectroscopic data. Lupeol acetate is a main compound present in fractions 14-42, and this fraction was the majority fraction from the extract; from this moretenone was obtained. In animals with liver damage, the extract at 200 and 400 mg/kg induced better body weight gain with respect to positive control (Silymarin); in addition, the mice that received the extract at 200 mg/kg and Silymarin exhibited slight steatosis; however, the animals' livers at 400 mg/kg did not show steatosis. The extract and fractions 14-42 showed a good anti-inflammatory activity by TPA model (DE50 = 1.58 and 1.48 mg/ear) and by carrageenan model (DE50 = 351.53 and 50.11 mg/kg). In the chronic inflammatory test, the extract at three doses revealed a similar effect to that of phenylbutazone, although the body weight gain was better in animals that received the extract at 900 mg/kg. Conclusion. The CHCl3:MeOH extract showed significant anti-inflammatory and good hepatoprotective effect on chronic models. The fraction containing moretenone and lupeol acetate as main compounds was more active than extract in both acute models of inflammation.

Recommended Products

BBF-05862 Epirubicin Inquiry
BBF-00764 Cerebroside C Inquiry
BBF-03754 Castanospermine Inquiry
BBF-03753 Baicalin Inquiry
BBF-01825 Loganin Inquiry
BBF-02642 Lactonamycin Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket