N-Benzoyl-D-cysteine

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

N-Benzoyl-D-cysteine
Category Others
Catalog number BBF-05198
CAS 294856-85-2
Molecular Weight 225.26
Molecular Formula C10H11NO3S
Purity >95% by HPLC

Online Inquiry

Specification

Related CAS 7217-84-7 (L-configuration)
Synonyms D-Cysteine, N-benzoyl-; benzoyl-D-cysteine
Storage Store at -20°C
IUPAC Name (2S)-2-benzamido-3-sulfanylpropanoic acid
Canonical SMILES C1=CC=C(C=C1)C(=O)NC(CS)C(=O)O
InChI InChI=1S/C10H11NO3S/c12-9(7-4-2-1-3-5-7)11-8(6-15)10(13)14/h1-5,8,15H,6H2,(H,11,12)(H,13,14)/t8-/m1/s1
InChI Key LJWSDBHOEIBWJY-MRVPVSSYSA-N

Properties

Boiling Point 486.7±40.0°C at 760 mmHg
Density 1.3±0.1 g/cm3

Reference Reading

1. Amide compound synthesis by adenylation domain of bacillibactin synthetase
Tomoko Abe, Yoshiteru Hashimoto, Sayaka Sugimoto, Kenta Kobayashi, Takuto Kumano, Michihiko Kobayashi J Antibiot (Tokyo). 2017 Apr;70(4):435-442. doi: 10.1038/ja.2016.117. Epub 2016 Oct 12.
The adenylation domain of nonribosomal peptide synthetase (NRPS) is responsible for the selective substrate recognition and its activation (as an acyl-O-AMP intermediate) during ATP consumption. DhbE, a stand-alone adenylation domain, acts on an aromatic acid, 2,3-dihydroxybenzoic acid (DHB). This activation is the initial step of the synthesis of bacillibactin that is a high-affinity small-molecule iron chelator also termed siderophore. Subsequently, the activated DHB is transferred and attached covalently to a peptidyl carrier protein domain via a thioester bond. Adenylation domains belong to the superfamily of adenylate-forming enzymes including acetyl-CoA synthetase, acyl-CoA synthetase and firefly luciferase. We previously reported a novel N-acylation reaction for an acyl-CoA synthetase (AcsA) that originally catalyzes the formation of a thioester bond between an acid and CoA, yielding acyl-CoA. This novel reaction was also confirmed for acetyl-CoA synthetase and firefly luciferase, but not yet for an adenylation domain. Here, we for the first time demonstrated the synthesis of N-acyl-L-cysteine by a stand-alone adenylation domain, DhbE. When DHB and L-cysteine were used as substrates of DhbE, N-DHB-L-cysteine was formed. A Vmax value of 0.0156±0.0008 units mg-1 and Km values of 150±18.3 mM for L-cysteine and 0.0579±0.0260 mM for DHB were obtained in this novel reaction. Furthermore, DhbE synthesized N-benzoyl-L-cysteine when benzoic acid and L-cysteine were used as substrates. Through the N-acylation reaction of DhbE, we also succeeded in the synthesis of N-aromatic acyl compounds that have never previously been reported to be produced by this enzymatic method.
2. Design, Synthesis, and Safener Activity of Novel Methyl (R)-N-Benzoyl/Dichloroacetyl-Thiazolidine-4-Carboxylates
Li-Xia Zhao, Hao Wu, Yue-Li Zou, Qing-Rui Wang, Ying Fu, Chun-Yan Li, Fei Ye Molecules. 2018 Jan 12;23(1):155. doi: 10.3390/molecules23010155.
A series of novel methyl (R)-N-benzoyl/dichloroacetyl-thiazolidine-4-carboxylates were designed by active substructure combination. The title compounds were synthesized using a one-pot route from l-cysteine methyl ester hydrochloride, acyl chloride, and ketones. All compounds were characterized by IR, ¹H NMR, 13C NMR, and HRMS. The structure of 4q was determined by X-ray crystallography. The biological tests showed that the title compounds protected maize from chlorimuron-ethyl injury to some extent. The ALS activity assay showed that the title compounds increased the ALS activity of maize inhibited by chlorimuron-ethyl. Molecular docking modeling demonstrated that Compound 4e competed against chlorimuron-ethyl to combine with the herbicide target enzyme active site, causing the herbicide to be ineffective.
3. Thioester deprotection using a biomimetic NCL approach
Valentina Villamil, Cecilia Saiz, Graciela Mahler Front Chem. 2022 Aug 22;10:934376. doi: 10.3389/fchem.2022.934376. eCollection 2022.
The reversibility of the thiol-thioester linkage has been broadly employed in many fields of biochemistry (lipid synthesis) and chemistry (dynamic combinatorial chemistry and material science). When the transthioesterification is followed by a S-to-N acyl transfer to give an amide bond, it is called Native Chemical Ligation (NCL), a high-yield chemoselective process used for peptide synthesis. Recently, we described thioglycolic acid (TGA) as a useful reagent for thioester deprotection both in solution and anchored to a solid-support under mild conditions. Inspired by NCL, in this work, we extended this approach and explored the use of 2-aminothiols for the deprotection of thiols bearing an acyl group. The best results were obtained using cysteamine or L-cysteine in an aqueous buffer pH 8 at room temperature for 30 min. The described approach was useful for S-acetyl, S-butyryl, and S-benzoyl heterocycles deprotection with yields up to 84%. Employing this methodology, we prepared six new analogs 2 of mercaptomethyl bisthiazolidine 1, a useful inhibitor of a wide-range of Metallo-β-Lactamases (MBLs). Compared with the previous methodologies (TGA polymer supported and TGA in solution), the biomimetic deprotection herein described presents better performance with higher yields, shorter reaction times, less time-consuming operations, easier setup, and lower costs.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2025 BOC Sciences. All rights reserved.

cartIcon
0
Inquiry Basket

No data available, please add!

Delete selectedGo to checkout

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

Accept Cookies
x