Narasin B

Narasin B

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-02000
CAS 58439-94-4
Molecular Weight 763.01
Molecular Formula C43H70O11

Online Inquiry

Description

Narasin B is a polyether antibiotic produced by Str. aureofaciena NRRL 5758. It has anti-gram-positive bacteria, anaerobic bacteria, mycoplasma and coccidia activity, and also has antiviral effect. Narasin B has a protective effect on chicken coccidiosis infection.

Specification

Storage Store at -20°C
IUPAC Name 2-[6-[6-[3-(5-ethyl-5-hydroxy-6-methyloxan-2-yl)-3,10,12-trimethyl-15-oxo-4,6,8-trioxadispiro[4.1.57.35]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxooctan-2-yl]-3,5-dimethyloxan-2-yl]butanoic acid
Canonical SMILES CCC(C1C(CC(C(O1)C(C)C(C(C)C(=O)C(CC)C2C(CC(C3(O2)C=CC(=O)C4(O3)CCC(O4)(C)C5CCC(C(O5)C)(CC)O)C)C)O)C)C)C(=O)O
InChI InChI=1S/C43H70O11/c1-12-30(35(46)27(8)34(45)28(9)36-23(4)21-24(5)37(51-36)31(13-2)39(47)48)38-25(6)22-26(7)42(52-38)18-15-32(44)43(54-42)20-19-40(11,53-43)33-16-17-41(49,14-3)29(10)50-33/h15,18,23-31,33-34,36-38,45,49H,12-14,16-17,19-22H2,1-11H3,(H,47,48)
InChI Key FBLJTCGAXDPRJH-UHFFFAOYSA-N

Properties

Antibiotic Activity Spectrum Gram-positive bacteria; mycoplasma; parasites; viruses
Boiling Point 838.4±65.0°C at 760 mmHg
Melting Point 150-153°C
Density 1.2±0.1 g/cm3
Solubility Soluble in Methanol, Ether

Reference Reading

1. Discovering the Potent Inhibitors Against Babesia bovis in vitro and Babesia microti in vivo by Repurposing the Natural Product Compounds
Yongchang Li, Mohamed Abdo Rizk, Eloiza May Galon, Mingming Liu, Jixu Li, Aaron Edmond Ringo, Shengwei Ji, Iqra Zafar, Maria Agnes Tumwebaze, Byamukama Benedicto, Naoaki Yokoyama, Ikuo Igarashi, Bayin Chahan, Xuenan Xuan Front Vet Sci. 2021 Nov 29;8:762107. doi: 10.3389/fvets.2021.762107. eCollection 2021.
In the present study, we screened 502 natural product compounds against the in vitro growth of Babesia (B.) bovis. Then, the novel and potent identified compounds were further evaluated for their in vitro efficacies using viability and cytotoxicity assays. The in vivo inhibitory effects of the selected compounds were evaluated using B. microti "rodent strain" in mice model. Three potent compounds, namely, Rottlerin (RL), Narasin (NR), Lasalocid acid (LA), exhibited the lowest IC50 (half-maximal inhibitory concentration) as follows: 5.45 ± 1.20 μM for RL, 1.86 ± 0.66 μM for NR, and 3.56 ± 1.41 μM for LA. The viability result revealed the ability of RL and LA to prevent the regrowth of treated parasite at 4 × IC50 and 2 × IC50, respectively, while 4 × IC50 of NR was sufficient to stop the regrowth of parasite. The hematology parameters of B. microti in vivo were different in the NR-treated groups as compared to the infected/untreated group. Interestingly, intraperitoneal administration of NR exhibiting inhibition in the growth of B. microti in mice was similar to that observed after administration of the commonly used antibabesial drug, diminazene aceturate (DA) (76.57% for DA, 74.73% for NR). Our findings indicate the richness of natural product compounds by novel potent antibabesial candidates, and the identified potent compounds, especially NR, might be used for the treatment of animal babesiosis.
2. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater
D Mooney, K G Richards, M Danaher, J Grant, L Gill, P-E Mellander, C E Coxon Sci Total Environ. 2020 Dec 1;746:141116. doi: 10.1016/j.scitotenv.2020.141116. Epub 2020 Jul 26.
Intensification of the food production system to meet increased global demand for food has led to veterinary pharmaceuticals becoming a critical component in animal husbandry. Anticoccidials are a group of veterinary products used to control coccidiosis in food-producing animals, with primary prophylactic use in poultry production. Excretion in manure and subsequent land-spreading provides a potential pathway to groundwater. Information on the fate and occurrence of these compounds in groundwater is scant, therefore these substances are potential emerging organic contaminants of concern. A study was carried out to investigate the occurrence of anticoccidial compounds in groundwater throughout the Republic of Ireland. Twenty-six anticoccidials (6 ionophores and 20 synthetic anticoccidials) were analysed at 109 sites (63 boreholes and 46 springs) during November and December 2018. Sites were categorised and selected based on the following source and pathway factors: (a) the presence/absence of poultry activity (b) predominant aquifer category and (c) predominant groundwater vulnerability, within the zone of contribution (ZOC) for each site. Seven anticoccidials, including four ionophores (lasalocid, monensin, narasin and salinomycin) and three synthetic anticoccidials (amprolium, diclazuril and nicarbazin), were detected at 24% of sites at concentrations ranging from 1 to 386 ng L-1. Monensin and amprolium were the two most frequently detected compounds, detected at 15% and 7% of sites, respectively. Multivariate statistical analysis has shown that source factors are the most significant drivers of the occurrence of anticoccidials, with no definitive relationships between occurrence and pathway factors. The study found that the detection of anticoccidial compounds is 6.5 times more likely when poultry activity is present within the ZOC of a sampling point, compared to the absence of poultry activity. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of the environmental occurrence and fate of anticoccidial veterinary products.
3. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge
Rose A Whelan, Kiran Doranalli, Teemu Rinttilä, Kirsi Vienola, German Jurgens, Juha Apajalahti Poult Sci. 2019 Sep 1;98(9):3450-3463. doi: 10.3382/ps/pey500.
It was hypothesized that dietary inclusion of Bacillus subtilis DSM 32315 could inhibit Clostridium perfringens induced necrotic enteritis (NE), thereby improving broiler performance. Male, d 0 chicks were randomly assigned 14 birds/pen, 11 pens/treatment in 3 treatments: a basal diet (control), a coccidiostat fed control (Narasin), and a direct fed microbial (DFM) B. subtilis DSM 32315 treatment. Necrotic enteritis was induced in all birds by oral inoculation of Eimeria maxima oocysts on d 12 and a virulent C. perfringens on d 16. Mortality was reduced (P < 0.001) in DFM and Narasin compared to control. DFM reduced (P < 0.001) feed conversion ratio (FCR) compared to control. Furthermore, DFM and Narasin reduced (P < 0.001) footpad lesions. The DFM was shown to increase (P < 0.05) Bacillus spp. and decrease (P < 0.05) C. perfringens in the ileum and cecum at several time points. To investigate microbiome changes in the cecum, digesta samples were analyzed with % guanine and cytosine (%G+C) microbial profiling which fractionates bacterial chromosomes based on the %G+C in DNA. The method revealed treatment profile peaks in low (27.0 to 34.5%), mid (40.5 to 54.0%), and high (59.0 to 68.0%) G+C fractions. 16S rRNA gene amplification and high throughput sequencing was conducted on each of these fractions in order to elucidate specific bacterial population differences. In the low and mid %G+C fractions, DFM had greater abundance of Lactobacillaceae family members (P = 0.03 and P = 0.01, respectively) and Lactobacillus salivarius (P = 0.04 and P = 0.01, respectively) than control or Narasin. Lactobacillus johnsonii was also greater in the low %G+C fraction compared to control and Narasin (P = 0.01). Lachnospiraceae (P = 0.04) and Ruminococcaceae (P < 0.01) in the mid %G+C fraction were reduced in the DFM compared to control. Positive alterations to the microbial populations in the gut of broilers may at least be a partial mechanism by which B. subtilis DSM 32315 reduced pathology and improved performance of broilers in the NE challenge.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket