Norlobariol methyl ester

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-05260
CAS

Online Inquiry

Reference Reading

1. Alginate ester: New moisture-scavenging excipients for direct compressible pharmaceutical tableting
Noelia M Sanchez-Ballester, Philippe Trens, Jean-Christophe Rossi, Ian Soulairol Carbohydr Polym. 2022 Dec 1;297:120063. doi: 10.1016/j.carbpol.2022.120063. Epub 2022 Aug 31.
The objective of this work is to evaluate methyl ester alginates and alginic acid (AA) as moisture-scavenging excipients for the formulation of aspirin tablets obtained by direct compression. The tablets were stored at accelerated conditions (40 °C/75 % RH) and assessed for changes in tensile strength, mass, thickness and disintegration time. While moisture caused a reduction in the hardness of MCC and AA tablets, hardness of the tablets made from methylated materials was virtually unaffected. The physical stability of alginate ester tablets was found to be related to their increased plastic deformation leading to extended interparticle contact with less impact on tablet porosity. Finally, the combination of higher moisture affinity and lower water dissociation exhibited by alginates esters resulted in tablets with the lowest aspirin degradation. These findings suggest that excipients with high water retention can act as moisture-scavengers without losing their functional properties and reducing the degradation of moisture-sensitive drugs.
2. Characterization of grapevine fungal canker pathogens Fatty Acid Methyl Ester (FAME) profiles
Christopher M Wallis, Daniel P Lawrence, Renaud Travadon, Kendra Baumgartner Mycologia. 2022 Jan-Feb;114(1):203-213. doi: 10.1080/00275514.2021.1983396. Epub 2021 Dec 10.
Fatty acid methyl ester (FAME) analyses can be useful for distinguishing microbial species. This study conducted FAME analyses on 14 fungal species known to cause grapevine trunk diseases. FAME profiles were dominated by oleic acid, albeit profiles were characteristic enough to separate species. Discriminant analyses suggested that palmitoleic acid/sapienic acid, pentadecylic acid, and an unsaturated 17-carbon fatty acid (17:1ω8 c)could explain 79.8% of the variance in the profiles among species in the first three discriminant functions. FAME profile libraries were created for use in a commercialized software, which was able to accurately identify isolates to the species level, with a low rate (9.4%) of samples to be reassessed. Dendrograms created using neighbor-joining cluster analyses with data from FAME profiles were compared with those using internal transcribed spacer (ITS) region sequences. This revealed that FAME profiles, albeit useful for tentative species identification, should not be used for determining phylogenetic relationships because the dendrograms were significantly unconcordant. Regardless, these results demonstrated the potential of FAME analyses in quickly and initially identifying closely related fungal species or confirming conclusions from other species identification techniques that would require independent validation.
3. O-Methylation of carboxylic acids with streptozotocin
Li-Yan Zeng, Yang Liu, Jiakun Han, Jinhong Chen, Shuwen Liu, Baomin Xi Org Biomol Chem. 2022 Jul 6;20(26):5230-5233. doi: 10.1039/d2ob00578f.
The clinically used DNA-alkylating drug streptozotocin (STZ) was investigated using a simple work-up as an O-methylating agent to transform various carboxylic acids, sulfonic acids and phosphorous acids into corresponding methyl esters, and did so with yields of up to 97% in 4 h at room temperature. Good substrate tolerance was observed, and benefited from the mild conditions and compatibility of the reaction with water.

Recommended Products

BBF-05806 Zeaxanthin Inquiry
BBF-01829 Deoxynojirimycin Inquiry
BBF-04621 Artemisinin Inquiry
BBF-02800 DB-2073 Inquiry
BBF-01210 Emericid Inquiry
BBF-00703 Carminomycin I Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket