Okadaic Acid

Okadaic Acid

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Okadaic Acid
Category Enzyme inhibitors
Catalog number BBF-04094
CAS 78111-17-8
Molecular Weight 805.00
Molecular Formula C44H68O13
Purity 95% by HPLC

Online Inquiry

Description

Okadaic acid is a marine sponge toxin which potently inhibits certain serine/threonine protein phosphatases. This cell permeable inhibitor targets the multiple isoforms of PP1, both isoforms of PP2A and PP3. It is a very weak inhibitor of PP2B and does not inhibit PP2C or other phosphatases.

Specification

Synonyms AA8227800; 9,10-Deepithio-9,10-didehydroacanthifolicin
Shelf Life Stable under recommended storage conditions
Storage Store at -20°C (dark)
IUPAC Name (2R)-3-[(2S,6R,8S,11R)-2-[(E,2R)-4-[(2S,2'R,4R,4aS,6R,8aR)-4-hydroxy-2-[(1S,3S)-1-hydroxy-3-[(2S,3R,6S)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]butyl]-3-methylidenespiro[4a,7,8,8a-tetrahydro-4H-pyrano[3,2-b]pyran-6,5'-oxolane]-2'-yl]but-3-en-2-yl]-11-hydroxy-4-methyl-1,7-dioxaspiro[5.5]undec-4-en-8-yl]-2-hydroxy-2-methylpropanoic acid
Canonical SMILES CC1CCC2(CCCCO2)OC1C(C)CC(C3C(=C)C(C4C(O3)CCC5(O4)CCC(O5)C=CC(C)C6CC(=CC7(O6)C(CCC(O7)CC(C)(C(=O)O)O)O)C)O)O
InChI InChI=1S/C44H68O13/c1-25-21-34(55-44(23-25)35(46)12-11-31(54-44)24-41(6,50)40(48)49)26(2)9-10-30-14-18-43(53-30)19-15-33-39(57-43)36(47)29(5)38(52-33)32(45)22-28(4)37-27(3)13-17-42(56-37)16-7-8-20-51-42/h9-10,23,26-28,30-39,45-47,50H,5,7-8,11-22,24H2,1-4,6H3,(H,48,49)/b10-9+/t26-,27-,28+,30+,31+,32+,33-,34+,35-,36-,37+,38+,39-,41-,42+,43-,44-/m1/s1
InChI Key QNDVLZJODHBUFM-WFXQOWMNSA-N
Source Okadaic acid is found in the marine sponges Halichondria okadai and Halichondria melanodocia and shellfish.

Properties

Appearance White Solid
Boiling Point 921.6°C at 760 mmHg
Melting Point 164-166°C
Density 1.28 g/cm3
Solubility Soluble in chloroform, ethanol, methanol, acetone, ethyl acetate, DMSO

Toxicity

Carcinogenicity No indication of carcinogenicity to humans (not listed by IARC).
Mechanism Of Toxicity Okadaic acid (OA) dramatically increases both nerve growth factor (NGF) mRNA content (50-fold) and NGF secretion (100-fold) in astrocytes. Okadaic acid also activated NGF gene transcription, which was preceded by an induction of c-fos and c-jun gene transcription. The induction of NGF expression by okadaic acid appeared independent from protein kinase C activity because down-regulating protein kinase C activity failed to decrease the okadaic acid stimulation. Results indicate that okadaic acid profoundly stimulates NGF expression in astrocytes mainly by enhancing NGF mRNA stability and suggest important roles for phosphoprotein phosphatases in regulating NGF production. Instead of activating protein kinase C like the phorbol ester tumor promoters, OA specifically inhibits phosphoprotein phosphatases 1 and 2A leading to an increase in the phosphorylation state of many cellular proteins. Interestingly, OA treatment of fibroblasts mimicked the effects of IL-1 on protein phosphorylation, suggesting that one cellular action of IL-1 might be to inhibit phosphoprotein phosphatase activity. OA has also been found to increase NGF mRNA content in mixed glial-neuronal hippocampal cell cultures similar to IL-1. The toxic potency of this phycotoxin is highly associated with the presence of the free carboxylic acid. Therefore, the toxin forms where the carboxylic acid is acylated are less toxic.

Reference Reading

1. Memantine treatment prevents okadaic acid induced neurotoxicity at the systemic and molecular levels
Mariam R Chighladze, Maia A Burjanadze, Nino C Chkhikvishvili, Manana Kandashvili, Gela V Beselia, Revaz O Solomonia, Lali B Kruashvili, Manana G Dashniani Neuroreport . 2020 Mar 4;31(4):281-286. doi: 10.1097/WNR.0000000000001375.
The present study was designed to investigate the effects of okadaic acid intracerebroventricular (ICV) injection on memory function and expression level of α7 subunit of nicotinic acetylcholine receptor (nAChR) and NR2B subunit of NMDA glutamate receptors in the hippocampus, as well as effect of the antidementic drug memantine on okadaic acid induced changes at systemic and molecular levels in rats. Okadaic acid was dissolved in artificial cerebrospinal fluid (aCSF) and injected ICV 200 ng/10 μl. Vehicle control received 10 μl of aCSF ICV bilaterally. Control and okadaic acid injected rats were divided into two subgroups: treated i.p. with saline or memantine (5 mg/kg daily for 13 days starting from the day of okadaic acid injection). Rats were trained in the dual-solution plus-maze task that can be solved by using place or response strategies. The Western immunoblotting was used to determine relative amount of hippocampal receptors protein levels. Obtained data revealed that okadaic acid ICV injected rats were severely impaired at acquiring the place version of the maze accompanied by significant decline in hippocampal α7 subunit of nACh receptors protein levels. Memantine treatment can prevent okadaic acid induced impairment of hippocampal-dependent spatial memory and accompanied by modulation of the expression level of α7 subunit of nACh and NR2B subunit of NMDA receptors in the hippocampus. Thus, our results support the presumption that α7 nACh receptors may play an important role in the cognitive enhancer effects of memantine and emphasize the role of cholinergic-glutamatergic interactions in memory.
2. Okadaic acid activates Wnt/β-catenin-signaling in human HepaRG cells
Oliver Poetz, Svenja Gohlke, Albert Braeuning, Cornelia Sommersdorf, Jessica Dietrich, Ulrich Rothbauer, Alfonso Lampen, Stefanie Hessel-Pras, Bjoern Traenkle Arch Toxicol . 2019 Jul;93(7):1927-1939. doi: 10.1007/s00204-019-02489-4.
The lipophilic phycotoxin okadaic acid (OA) occurs in the fatty tissue and hepatopancreas of filter-feeding shellfish. The compound provokes the diarrhetic shellfish poisoning (DSP) syndrome after intake of seafood contaminated with high levels of the DSP toxin. In animal experiments, long-term exposure to OA is associated with an elevated risk for tumor formation in different organs including the liver. Although OA is a known inhibitor of the serine/threonine protein phosphatase 2A, the mechanisms behind OA-induced carcinogenesis are not fully understood. Here, we investigated the influence of OA on the β-catenin-dependent Wnt-signaling pathway, addressing a major oncogenic pathway relevant for tumor development. We analyzed OA-mediated effects on β-catenin and its biological function, cellular localization, post-translational modifications, and target gene expression in human HepaRG hepatocarcinoma cells treated with non-cytotoxic concentrations up to 50 nM. We detected concentration- and time-dependent effects of OA on the phosphorylation state, cellular redistribution as well as on the amount of transcriptionally active β-catenin. These findings were confirmed by quantitative live-cell imaging of U2OS cells stably expressing a green fluorescent chromobody which specifically recognize hypophosphorylated β-catenin. Finally, we demonstrated that nuclear translocation of β-catenin mediated by non-cytotoxic OA concentrations results in an upregulation of Wnt-target genes. In conclusion, our results show a significant induction of the canonical Wnt/β-catenin-signaling pathway by OA in human liver cells. Our data contribute to a better understanding of the molecular mechanisms underlying OA-induced carcinogenesis.
3. Okadaic acid meet and greet: an insight into detection methods, response strategies and genotoxic effects in marine invertebrates
María Verónica Prego-Faraldo, Vanessa Valdiglesias, Josefina Méndez, José M Eirín-López Mar Drugs . 2013 Aug 9;11(8):2829-45. doi: 10.3390/md11082829.
Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation.

Spectrum

Predicted LC-MS/MS Spectrum - 10V, Positive

Experimental Conditions

Ionization Mode: Positive
Collision Energy: 10 eV
Instrument Type: QTOF (generic), spectrum predicted by CFM-ID
Mass Resolution: 0.0001 Da

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket