PNU-159682

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

PNU-159682
Category Antineoplastic
Catalog number BBF-05916
CAS 202350-68-3
Molecular Weight 641.62
Molecular Formula C32H35NO13
Purity ≥97%

Ordering Information

Catalog Number Size Price Stock Quantity
BBF-05916 5 mg $719 In stock

Online Inquiry

Add to cart

Description

PNU-159682 is a major active metabolite of nemorubicin (MMDX) in human liver microsomes. It is a highly potent DNA topoisomerase II inhibitor with excellent cytotoxicity, and shows >3,000-fold cytotoxic than its parent compound (MMDX and doxorubicin). It is a more potent and well tolerated ADC cytotoxin than doxorubicin.

Specification

Synonyms (8S,10S)-7,8,9,10-Tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-10-(((1S,3R,4aS,9S,9aR,10aS)-octahydro-9-methoxy-1-methyl-1H-pyrano(4',3':4,5)oxazolo(2,3-c)(1,4)oxazin-3-yl)oxy)-5,12-naphthacenedione; 5,12-Naphthacenedione, 7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-10-(((1S,3R,4aS,9S,9aR,10aS)-octahydro-9-methoxy-1-methyl-1H-pyrano(4',3':4,5)oxazolo(2,3-c)(1,4)oxazin-3-yl)oxy)-, (8S,10S)-; PNU159682; PNU 159682
Shelf Life ≥12 months if stored properly
Storage Store at 2-8°C for short term (days to weeks) or -20°C for long term (months to years)
IUPAC Name (7S,9S)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-7-[[(2S,4R,6S,7S,9R,10S)-10-methoxy-6-methyl-5,8,11-trioxa-1-azatricyclo[7.4.0.02,7]tridecan-4-yl]oxy]-8,10-dihydro-7H-tetracene-5,12-dione
Canonical SMILES CC1C2C(CC(O1)OC3CC(CC4=C(C5=C(C(=C34)O)C(=O)C6=C(C5=O)C=CC=C6OC)O)(C(=O)CO)O)N7CCOC(C7O2)OC
InChI InChI=1S/C32H35NO13/c1-13-29-16(33-7-8-43-31(42-3)30(33)46-29)9-20(44-13)45-18-11-32(40,19(35)12-34)10-15-22(18)28(39)24-23(26(15)37)25(36)14-5-4-6-17(41-2)21(14)27(24)38/h4-6,13,16,18,20,29-31,34,37,39-40H,7-12H2,1-3H3/t13-,16-,18-,20-,29+,30+,31-,32-/m0/s1
InChI Key SLURUCSFDHKXFR-WWMWMSKMSA-N

Properties

Appearance White solid powder
Application ADCs Cytotoxin
Boiling Point 838.5±65.0 °C at 760 mmHg
Flash Point 460.9±34.3 °C
Density 1.58±0.1 g/cm3 (Predicted)
Solubility Soluble in DMSO, chloroform (slightly), methanol (slightly)
LogP 6.18

Reference Reading

1.In vitro hepatic conversion of the anticancer agent nemorubicin to its active metabolite PNU-159682 in mice, rats and dogs: a comparison with human liver microsomes.
Quintieri L1, Fantin M, Palatini P, De Martin S, Rosato A, Caruso M, Geroni C, Floreani M. Biochem Pharmacol. 2008 Sep 15;76(6):784-95. doi: 10.1016/j.bcp.2008.07.003. Epub 2008 Jul 11.
We recently demonstrated that nemorubicin (MMDX), an investigational antitumor drug, is converted to an active metabolite, PNU-159682, by human liver cytochrome P450 (CYP) 3A4. The objectives of this study were: (1) to investigate MMDX metabolism by liver microsomes from laboratory animals (mice, rats, and dogs of both sexes) to ascertain whether PNU-159682 is also produced in these species, and to identify the CYP form(s) responsible for its formation; (2) to compare the animal metabolism of MMDX with that by human liver microsomes (HLMs), in order to determine which animal species is closest to human beings; (3) to explore whether differences in PNU-159682 formation are responsible for previously reported species- and sex-related differences in MMDX host toxicity. The animal metabolism of MMDX proved to be qualitatively similar to that observed with HLMs since, in all tested species, MMDX was mainly converted to PNU-159682 by a single CYP3A form.
2.The interaction of nemorubicin metabolite PNU-159682 with DNA fragments d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) shows a strong but reversible binding to G:C base pairs.
Mazzini S1, Scaglioni L, Mondelli R, Caruso M, Sirtori FR. Bioorg Med Chem. 2012 Dec 15;20(24):6979-88. doi: 10.1016/j.bmc.2012.10.033. Epub 2012 Nov 3.
The antitumor anthracycline nemorubicin is converted by human liver microsomes to a major metabolite, PNU-159682 (PNU), which was found to be much more potent than its parent drug toward cultured tumor cells and in vivo tumor models. The mechanism of action of nemorubicin appears different from other anthracyclines and until now is the object of studies. In fact PNU is deemed to play a dominant, but still unclear, role in the in vivo antitumor activity of nemorubicin. The interaction of PNU with the oligonucleotides d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) was studied with a combined use of (1)H and (31)P NMR spectroscopy and by ESI-mass experiments. The NMR studies allowed to establish that the intercalation between the base pairs of the duplex leads to very stable complexes and at the same time to exclude the formation of covalent bonds. Melting experiments monitored by NMR, allowed to observe with high accuracy the behaviour of the imine protons with temperature, and the results showed that the re-annealing occurs after melting.
3.Formation and antitumor activity of PNU-159682, a major metabolite of nemorubicin in human liver microsomes.
Quintieri L1, Geroni C, Fantin M, Battaglia R, Rosato A, Speed W, Zanovello P, Floreani M. Clin Cancer Res. 2005 Feb 15;11(4):1608-17.
PURPOSE: Nemorubicin (3'-deamino-3'-[2''(S)-methoxy-4''-morpholinyl]doxorubicin; MMDX) is an investigational drug currently in phase II/III clinical testing in hepatocellular carcinoma. A bioactivation product of MMDX, 3'-deamino-3'',4'-anhydro-[2''(S)-methoxy-3''(R)-oxy-4''-morpholinyl]doxorubicin (PNU-159682), has been recently identified in an incubate of the drug with NADPH-supplemented rat liver microsomes. The aims of this study were to obtain information about MMDX biotransformation to PNU-159682 in humans, and to explore the antitumor activity of PNU-159682.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket