Ristocetin A

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Ristocetin A
Category Antibiotics
Catalog number BBF-04151
CAS 11021-66-2
Molecular Weight 2067.92
Molecular Formula C95H110N8O44
Purity >95% by HPLC

Online Inquiry

Description

Ristocetin A is a potent antibacterial glycopeptide antibiotic. It induced platelet aggregation by binding to a factor absent in people suffering from von willebrands disease, and is an important diagnostic acid.

Specification

Related CAS 1405-58-9 (Deleted CAS) 37361-31-2 (Deleted CAS) 1404-55-3 (Ristocetin)
Synonyms Ristomycin A; 1H,15H,34H-20,23:30,33-Dietheno-3,18:35,48-bis(iminomethano)-4,8:10,14:25,28:43,47-tetrametheno-28H-[1,14,6,22]dioxadiazacyclooctacosino[4,5-m][10,2,16]benzoxadiazacyclotetracosine, ristomycin A deriv.
Storage Store at -20°C
IUPAC Name methyl (1S,2R,18R,19R,22S,34S,37R,40R,52S)-22-amino-2-[(2R,4R,5R,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-64-[(2S,3R,4S,5S,6R)-3-[(2R,3S,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-18,26,31,44,49-pentahydroxy-30-methyl-21,35,38,54,56,59-hexaoxo-47-[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7,13,28-trioxa-20,36,39,53,55,58-hexazaundecacyclo[38.14.2.23,6.214,17.219,34.18,12.123,27.129,33.141,45.010,37.046,51]hexahexaconta-3(66),4,6(65),8,10,12(64),14(63),15,17(62),23(61),24,26,29(60),30,32,41(57),42,44,46(51),47,49-henicosaene-52-carboxylate
Canonical SMILES CC1C(C(CC(O1)OC2C3C(=O)NC(C4=C(C(=CC(=C4)O)OC5C(C(C(C(O5)CO)O)O)O)C6=C(C=CC(=C6)C(C(=O)N3)NC(=O)C7C8=CC(=C(C(=C8)OC9=CC=C2C=C9)OC1C(C(C(C(O1)COC1C(C(C(C(O1)C)O)O)O)O)O)OC1C(C(C(C(O1)CO)O)O)OC1C(C(C(CO1)O)O)O)OC1=CC=C(C=C1)C(C1C(=O)NC(C2=CC(=C(C(=C2)OC2=C(C=CC(=C2)C(C(=O)N1)N)O)C)O)C(=O)N7)O)O)C(=O)OC)N)O
InChI InChI=1S/C95H110N8O44/c1-30-47(109)18-37-20-49(30)139-50-19-35(9-16-46(50)108)59(97)84(125)102-64-68(113)33-5-11-40(12-6-33)137-52-21-38-22-53(81(52)145-95-83(76(121)72(117)56(143-95)29-134-91-78(123)73(118)67(112)32(3)136-91)147-94-82(75(120)71(116)55(27-105)142-94)146-92-77(122)69(114)48(110)28-133-92)138-41-13-7-34(8-14-41)80(144-57-25-44(96)66(111)31(2)135-57)65-89(130)101-63(90(131)132-4)43-23-39(106)24-51(140-93-79(124)74(119)70(115)54(26-104)141-93)58(43)42-17-36(10-15-45(42)107)60(85(126)103-65)98-87(128)62(38)99-86(127)61(37)100-88(64)129/h5-24,31-32,44,48,54-57,59-80,82-83,91-95,104-124H,25-29,96-97H2,1-4H3,(H,98,128)(H,99,127)(H,100,129)(H,101,130)(H,102,125)(H,103,126)/t31-,32-,44+,48+,54+,55+,56+,57-,59-,60+,61-,62+,63-,64+,65-,66-,67-,68+,69+,70+,71+,72+,73+,74-,75-,76-,77-,78+,79-,80+,82-,83+,91+,92-,93+,94+,95-/m0/s1
InChI Key VUOPFFVAZTUEGW-IQPVDWMOSA-N
Source Amycolatopsis sp.

Properties

Appearance Light Tan Powder
Density 1.76±0.1 g/cm3
Solubility Soluble in ethanol, methanol, DMF, DMSO, Water

Reference Reading

1. Enhancing Ristomycin A Production by Overexpression of ParB-Like StrR Family Regulators Controlling the Biosynthesis Genes
Kai Liu, Xin-Rui Hu, Li-Xing Zhao, Yemin Wang, Zixin Deng, Meifeng Tao Appl Environ Microbiol. 2021 Sep 10;87(19):e0106621. doi: 10.1128/AEM.01066-21. Epub 2021 Sep 10.
Amycolatopsis sp. strain TNS106 harbors a ristomycin-biosynthetic gene cluster (asr) in its genome and produces ristomycin A. Deletion of the sole cluster-situated StrR family regulatory gene, asrR, abolished ristomycin A production and the transcription of the asr genes orf5 to orf39. The ristomycin A fermentation titer in Amycolatopsis sp. strain TNS106 was dramatically improved by overexpression of asrR and a heterologous StrR family regulatory gene, bbr, from the balhimycin-biosynthetic gene cluster (BGC) utilizing strong promoters and multiple gene copies. Ristomycin A production was improved by approximately 60-fold, resulting in a fermentation titer of 4.01 g/liter in flask culture, in one of the engineered strains. Overexpression of AsrR and Bbr upregulated transcription of tested asr biosynthetic genes, indicating that these asr genes were positively regulated by AsrR and Bbr. However, only the promoter region of the asrR operon and the intergenic region upstream of orf12 were bound by AsrR and Bbr in gel retardation assays, suggesting that AsrR and Bbr directly regulated the asrR operon and probably orf12 to orf14 but no other asr biosynthetic genes. Further assays with synthetic short probes showed that AsrR and Bbr specifically bound not only probes containing the canonical inverted repeats but also a probe with only one 7-bp element of the inverted repeats in its native context. AsrR and Bbr have an N-terminal ParB-like domain and a central winged helix-turn-helix DNA-binding domain. Site-directed mutations indicated that the N-terminal ParB-like domain was involved in activation of ristomycin A biosynthesis and did not affect the DNA-binding activity of AsrR and Bbr. IMPORTANCE This study showed that overexpression of either a native StrR family regulator (AsrR) or a heterologous StrR family regulator (Bbr) dramatically improved ristomycin A production by increasing the transcription of biosynthetic genes directly or indirectly. The conserved ParB-like domain of AsrR and Bbr was demonstrated to be involved in the regulation of asr BGC expression. These findings provide new insights into the mechanism of StrR family regulators in the regulation of glycopeptide antibiotic biosynthesis. Furthermore, the regulator overexpression plasmids constructed in this study could serve as valuable tools for strain improvement and genome mining for new glycopeptide antibiotics. In addition, ristomycin A is a type III glycopeptide antibiotic clinically used as a diagnostic reagent due to its side effects. The overproduction strains engineered in this study are ideal materials for industrial production of ristomycin A.
2. Structure of ristocetin A in complex with a bacterial cell-wall mimetic
Virginie Nahoum, Sherri Spector, Patrick J Loll Acta Crystallogr D Biol Crystallogr. 2009 Aug;65(Pt 8):832-8. doi: 10.1107/S0907444909018344. Epub 2009 Jul 17.
Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.
3. Elucidation of retention mechanism of dipeptides on a ristocetin A-based chiral stationary phase using a combination of chromatographic and molecular simulation techniques
Ina Varfaj, Margarita V Pershina, Mariya V Stepanova, Roccaldo Sardella, Leonid D Asnin, Andrea Carotti J Chromatogr A. 2022 Jul 19;1675:463158. doi: 10.1016/j.chroma.2022.463158. Epub 2022 May 19.
Two chiral stationary phases virtually reproducing the Nautilus-R column were modeled in silico to study the enantiorecognition mechanism of some selected dipeptides, taking into consideration the two different anchoring alternatives to the silica layer involving the two ristocetin A amino groups. A mobile phase composed of water-methanol (40:60, v/v) was included in the system. The analyses of the trajectories supported the experimental L(LL)

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket