1. Saquayamycin B1 Suppresses Proliferation, Invasion, and Migration by Inhibiting PI3K/AKT Signaling Pathway in Human Colorectal Cancer Cells
Jianjiang Li, Ningning Han, Hao Zhang, Xiaoyu Xie, Yaoyao Zhu, E Zhang, Jiahui Ma, Chuangeng Shang, Mengxiong Yin, Weidong Xie, Xia Li Mar Drugs. 2022 Sep 7;20(9):570. doi: 10.3390/md20090570.
Moromycin B (Mor B), saquayamycin B1 (Saq B1), saquayamycin B (Saq B), and landomycin N (Lan N), four angucyclines produced by the marine-derived actinomycete Streptomyces sp., are a class of polyketone compounds containing benzanthracene. Here, the structure-activity relationship of these four compounds was analyzed in human colorectal cancer (CRC) cells. Saq B1, which showed the strongest cytotoxicity with an IC50 of 0.18-0.84 µM for CRC cells in MTT assays, was employed to test underlying mechanisms of action in SW480 and SW620 cells (two invasive CRC cell lines). Our results showed that Saq B1 inhibited CRC cell proliferation in a dose- and time-dependent manner. Notably, lower cytotoxicity was measured in normal human hepatocyte cells (QSG-7701). Furthermore, we observed proapoptosis, antimigration, and anti-invasion activities of Saq B1 in CRC cells. At the same time, the protein and mRNA expression of important markers related to the epithelial-mesenchymal transition (EMT) and apoptosis changed, including N-cadherin, E-cadherin, and Bcl-2, in Saq B1-treated CRC cells. Surprisingly, the PI3K/AKT signaling pathway was shown to be involved in Saq B1-induced apoptosis, and in inhibiting invasion and migration. Computer docking models also suggested that Saq B1 might bind to PI3Kα. Collectively, these results indicate that Saq B1 effectively inhibited growth and decreased the motor ability of CRC cells by regulating the PI3K/AKT signaling pathway, which provides more possibilities for the development of drugs in the treatment of CRC.
2. Cytotoxic, Anti-Migration, and Anti-Invasion Activities on Breast Cancer Cells of Angucycline Glycosides Isolated from a Marine-Derived Streptomyces sp
Xin-Ying Qu, Jin-Wei Ren, Ai-Hong Peng, Shi-Qi Lin, Dan-Dan Lu, Qian-Qian Du, Ling Liu, Xia Li, Er-Wei Li, Wei-Dong Xie Mar Drugs. 2019 May 9;17(5):277. doi: 10.3390/md17050277.
Four angucycline glycosides were previously characterized from marine-derived Streptomyces sp. OC1610.4. Further investigation of this strain cultured on different fermentation media from that used previously resulted in the isolation of two new angucycline glycosides, vineomycins E and F (1-2), and five known homologues, grincamycin L (3), vineomycinone B2 (4), fridamycin D (5), moromycin B (7), and saquayamycin B1 (8). Vineomycin F (2) contains an unusual ring-cleavage deoxy sugar. All the angucycline glycosides isolated from Streptomyces sp. OC1610.4 were evaluated for their cytotoxic activity against breast cancer cells MCF-7, MDA-MB-231, and BT-474. Moromycin B (7), saquayamycin B1 (8), and saquayamycin B (9) displayed potent anti-proliferation against the tested cell lines, with IC50 values ranging from 0.16 to 0.67 μM. Saquayamycin B (9) inhibited the migration and invasion of MDA-MB-231 cells in a dose-dependent manner, as detected by Transwell and wound-healing assays.
3. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in Streptomyces dengpaensis XZHG99T
Yumei Li, Jiyu Li, Zhengmao Ye, Lingchao Lu Prep Biochem Biotechnol. 2021;51(2):173-182. doi: 10.1080/10826068.2020.1805754. Epub 2020 Aug 20.
Strain improvement of Streptomyces dengpaensis XZHG99T was performed by combined UV mutagenesis and ribosome engineering, as well as fermentation optimization for enhanced angucycline production (rabelomycin and saquayamycin B1). First, four streptomycin-resistant mutants were obtained after screening of UV mutagenesis and ribosome engineering. Then a rpsL mutant (HTT7) with higher productivity of rabelomycin and saquayamycin B1 was selected according to genetic screening and HPLC/LC-MS analyses, whose maximum titers of rabelomycin and saquayamycin B1 were 3.6 ± 0.02 mg/L and 7.5 ± 0.04 mg/L, respectively, about fourfold higher than those produced by XZHG99T. Next, fermentation optimization of HTT7 was successively carried out by single-factor experiments in shake flasks. The titers of rabelomycin and saquayamycin B1 were increased to 11.2 ± 0.04 mg/L and 20.5 ± 0.02 mg/L after optimization of shake flask fermentation conditions, respectively, which was increased about sixfold compared with those produced by XZHG99T. Finally, the titers of rabelomycin and saquayamycin B1 reached 15.7 ± 0.05 mg/L and 39.9 ± 0.05 mg/L after the scaled-up fermentation, which was 7.8-fold and 11.4-fold higher than those produced by XZHG99T, respectively. These data demonstrate that the combined empirical strain-breeding approaches are still an effective and convenient pathway to improve strain production ability.