Siamycin I

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Siamycin I
Category Antibiotics
Catalog number BBF-04498
CAS 164802-68-0
Molecular Weight 2163.48
Molecular Formula C97H131N23O26S4
Purity ≥85%

Online Inquiry

Description

Siamycin I is a tricyclic peptide antibiotic originally isolated from Streptomyces sp. AA6532. It exhibits antiviral and antibacterial effects against HIV and HSV, as well as B. subtilis, M. luteus and S. aureus.

Specification

Synonyms Siamycin I;164802-68-0;BMY 29304;CLGVGSCNDFAGCGYAIVCFW;FR901724;FR 901724;MS 271;DTXSID70167811;DA-51269;
Sequence cyclo{CLGVGSCND}FAGCGYAIVCFW (Disulfide bridge: Cys1-Cys13, Cys7-Cys19)
Storage Please store the product under the recommended conditions in the Certificate of Analysis.
IUPAC Name (2S)-2-[[(2S)-2-[[(1S,4S,7S,13R,19S,22S,25S,28S,31R,36R,39S,45S,51S,54R,60S)-60-(2-amino-2-oxoethyl)-4-benzyl-25-[(2S)-butan-2-yl]-39-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-7,22-dimethyl-51-(2-methylpropyl)-2,5,8,11,14,17,20,23,26,29,38,41,44,47,50,53,56,59,62-nonadecaoxo-28,45-di(propan-2-yl)-33,34,64,65-tetrathia-3,6,9,12,15,18,21,24,27,30,37,40,43,46,49,52,55,58,61-nonadecazatricyclo[34.21.5.413,54]hexahexacontane-31-carbonyl]amino]-3-phenylpropanoyl]amino]-3-(1H-indol-3-yl)propanoic acid
Canonical SMILES CCC(C)C1C(=O)NC(C(=O)NC(CSSCC2C(=O)NC(C(=O)NC3CC(=O)NC(CSSCC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)N1)C)CC4=CC=C(C=C4)O)NC(=O)CNC(=O)C(NC(=O)C(NC3=O)CC5=CC=CC=C5)C)C(=O)NC(C(=O)NCC(=O)NC(C(=O)NCC(=O)NC(C(=O)N2)CO)C(C)C)CC(C)C)CC(=O)N)C(=O)NC(CC6=CC=CC=C6)C(=O)NC(CC7=CNC8=CC=CC=C87)C(=O)O)C(C)C
InChI InChI=1S/C97H131N23O26S4/c1-11-50(8)80-96(144)119-79(49(6)7)95(143)117-71(93(141)112-63(32-54-22-16-13-17-23-54)87(135)115-66(97(145)146)34-56-37-99-59-25-19-18-24-58(56)59)46-150-149-45-70-92(140)113-64(35-72(98)123)88(136)114-65-36-73(124)108-69(91(139)110-60(30-47(2)3)83(131)101-41-77(128)118-78(48(4)5)94(142)103-40-75(126)107-67(42-121)90(138)116-70)44-148-147-43-68(109-76(127)38-100-81(129)51(9)104-86(134)62(111-89(65)137)31-53-20-14-12-15-21-53)84(132)102-39-74(125)106-61(33-55-26-28-57(122)29-27-55)85(133)105-52(10)82(130)120-80/h12-29,37,47-52,60-71,78-80,99,121-122H,11,30-36,38-46H2,1-10H3,(H2,98,123)(H,100,129)(H,101,131)(H,102,132)(H,103,142)(H,104,134)(H,105,133)(H,106,125)(H,107,126)(H,108,124)(H,109,127)(H,110,139)(H,111,137)(H,112,141)(H,113,140)(H,114,136)(H,115,135)(H,116,138)(H,117,143)(H,118,128)(H,119,144)(H,120,130)(H,145,146)/t50-,51-,52-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,78-,79-,80-/m0/s1
InChI Key TXYRKTDGDMHVHR-NEKRQKPVSA-N

Properties

Appearance Powder
Antibiotic Activity Spectrum Viruses; Bacterial
Melting Point 255°C (dec.)
Solubility Soluble in Methanol

Reference Reading

1. Interactions of the intact FsrC membrane histidine kinase with the tricyclic peptide inhibitor siamycin I revealed through synchrotron radiation circular dichroism
Jiro Nakayama, Simon G Patching, Shalini Edara, Mary K Phillips-Jones, Giuliano Siligardi, Rohanah Hussain Phys Chem Chem Phys . 2013 Jan 14;15(2):444-7. doi: 10.1039/c2cp43722h.
The suitability of synchrotron radiation circular dichroism spectroscopy (SRCD) for studying interactions between the tricyclic peptide inhibitor siamycin I and the intact FsrC membrane sensor kinase in detergent micelles has been established. In the present study, tertiary structural changes demonstrate that inhibitor binding occurs at a different, non-overlapping site to the native ligand, GBAP.
2. Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis
Emi Tanaka, Ritsuko Mitsuhata, Jiro Nakayama, Masaru Tanokura, Hiromi Kumon, Kenji Sonomoto, Yumi Uemura, Koji Nagata, Kenzo Nishiguchi, Reiko Kariyama J Bacteriol . 2007 Feb;189(4):1358-65. doi: 10.1128/JB.00969-06.
The expression of two Enterococcus faecalis virulence-related proteases, gelatinase (GelE) and serine protease (SprE), is positively regulated by a quorum-sensing system encoded by the fsr gene cluster. In this system, E. faecalis secretes an autoinducing peptide, gelatinase biosynthesis-activating pheromone (GBAP), which triggers the FsrC-FsrA two-component regulatory system controlling the expression of two transcripts, fsrBDC and gelE-sprE. In the present study, we screened actinomycete metabolites for inhibitors of fsr quorum sensing. E. faecalis was cultured with each actinomycete culture supernatant tested, and the production of gelatinase and the production of GBAP were examined using the first screening and the second screening, respectively. Culture supernatant of Streptomyces sp. strain Y33-1 had the most potent inhibitory effect on both gelatinase production and GBAP production without inhibiting E. faecalis cell growth. The inhibitor in the culture supernatant was identified as a known peptide antibiotic, siamycin I. Siamycin I inhibited both gelatinase production and GBAP production at submicromolar concentrations, and it inhibited E. faecalis cell growth at concentrations above micromolar concentrations. Quantitative analysis of fsrBDC and gelE-sprE transcripts revealed that siamycin I suppressed the expression of both transcripts at a sublethal concentration. Siamycin I attenuated gelatinase production even when an overdose of GBAP was exogenously added to the culture. These results suggested that siamycin I inhibited the GBAP signaling via the FsrC-FsrA two-component regulatory system in a noncompetitive manner. The sublethal concentrations of siamycin I also attenuated biofilm formation. Treatment with siamycin could be a novel means of treating enterococcal infections.
3. High-resolution solution structure of siamycin II: novel amphipathic character of a 21-residue peptide that inhibits HIV fusion
M S Friedrichs, T Furumai, M Tsunakawa, K L Constantine, R E Bruccoleri, S Hill, T Oki, M Nishio, H Ohkuma, D Detlefsen J Biomol NMR . 1995 Apr;5(3):271-86. doi: 10.1007/BF00211754.
The 21-amino acid peptides siamycin II (BMY-29303) and siamycin I (BMY-29304), derived from Streptomyces strains AA3891 and AA6532, respectively, have been found to inhibit HIV-1 fusion and viral replication in cell culture. The primary sequence of siamycin II is CLGIGSCNDFAGCGYAIVCFW. Siamycin I differs by only one amino acid; it has a valine residue at position 4. In both peptides, disulfide bonds link Cys1 with Cys13 and Cys7 with Cys19, and the side chain of Asp9 forms an amide bond with the N-terminus. Siamycin II, when dissolved in a 50:50 mixture of DMSO and H2O, yields NOESY spectra with exceptional numbers of cross peaks for a peptide of this size. We have used 335 NOE distance constraints and 13 dihedral angle constraints to generate an ensemble of 30 siamycin II structures; these have average backbone atom and all heavy atom rmsd values to the mean coordinates of 0.24 and 0.52 A, respectively. The peptide displays an unusual wedge-shaped structure, with one face being predominantly hydrophobic and the other being predominantly hydrophilic. Chemical shift and NOE data show that the siamycin I structure is essentially identical to siamycin II. These peptides may act by preventing oligomerization of the HIV transmembrane glycoprotein gp41, or by interfering with interactions between gp41 and the envelope glycoprotein gp120, the cell membrane or membrane-bound proteins [Frèchet, D. et al. (1994) Biochemistry, 33, 42-50]. The amphipathic nature of siamycin II and siamycin I suggests that a polar (or apolar) site on the target protein may be masked by the apolar (or polar) face of the peptide upon peptide/protein complexation.

Recommended Products

BBF-03516 (±)-Naringenin Inquiry
BBF-03908 Miltefosine Inquiry
BBF-00664 Alternariol Inquiry
BBF-05781 Emodepside Inquiry
BBF-03211 AT-265 Inquiry
BBF-03868 Honokiol Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket