1. Green electrochemical synthesis of silver sulfadiazine microcrystals
Faezeh Zivari Moshfegh, Mahmood Masoudi Khoram, Davood Nematollahi RSC Adv . 2019 Aug 5;9(42):24105-24109. doi: 10.1039/c9ra04504j.
Electrochemical synthesis of silver sulfadiazine (AgSD) microcrystals was carried out galvanostatically in a special two-electrode cell equipped with a sacrificial silver rod anode and a stainless steel plate cathode. The cell used in this work consists of a small cylindrical chamber containing aqueous sulfadiazine/sodium nitrate as the anode compartment inside a larger cylindrical chamber containing nitric acid solution as the cathode compartment. The ionic connection of two chambers is carried out through a solvent surface layer. In this study, the effect of the experimental parameters such as applied current density and sodium nitrate concentration as well as nitric acid concentration on the yield and energy consumption of AgSD is discussed. The proposed method is fast and green and has unique features including synthesis in a single step, and no need for a metal salt.
2. Extravasation of Noncytotoxic Drugs: A Review of the Literature
Samit Patel, Ann Le Ann Pharmacother . 2014 Jul;48(7):870-886. doi: 10.1177/1060028014527820.
Objective:Extravasation is a potential complication associated with intravenous therapy administration. Inadvertent leakage of medications with vesicant properties can cause severe tissue necrosis, which can lead to devastating long-term consequences. Recognizing potential agents is an essential step in mitigating the risk of extravasation.Data source:A literature search was carried out using PubMed with the following key words: extravasation, soft tissue injury, phlebitis, and infiltration, from January 1961 through January 2014.Study selection and data extraction:The publications were screened manually and reviewed to identify reports for medications that included synonyms of the International Nonproprietary Name, while excluding antineoplastic agents, radiographic contrast material, investigational or nonmarketed drugs, and animal data, to yield 70 articles. Furthermore, reference citations from publications were also reviewed for relevance and yielded 4 articles.Data synthesis:We discovered 232 cases of extravasation involving 37 agents (in order of frequency): phenytoin, parenteral nutrition, calcium gluconate, potassium chloride, calcium chloride, dopamine, dextrose solutions, epinephrine, sodium bicarbonate, nafcillin, propofol, norepinephrine, mannitol, arginine, promethazine, vancomycin, tetracycline, dobutamine, vasopressin, sodium thiopental, acyclovir, amphotericin, ampicillin, cloxacillin, gentamicin, metronidazole, oxacillin, penicillin, amiodarone, albumin, furosemide, lipids, lorazepam, immunoglobulin, morphine, and sodium valproate. Potential properties contributing to extravasation include the following: pH, osmolarity, diluent, vasoactive properties, and inactive ingredients. Antidotes and supportive care agents used in the management of these cases of extravasation include hyaluronidase, phentolamine, terbutaline, topical anesthetics (such as lidocaine and prilocaine cream), topical antimicrobials (such as silver sulfadiazine and chlorhexidine), topical debridement agents (collagenase ointment), topical steroids, and topical vasodilators (nitroglycerin).Conclusion:Data on the management of noncytotoxic extravasations is sparse, consisting primarily of case reports and anecdotal evidence. Fortunately, this adverse outcome is preventable and identification of vesicant agents plays a pivotal role. The intent of this review is to provide a reference identifying noncytotoxic vesicants and the management of extravasations associated with specific agents.
3. Exploration of synthesizing fluorescent silicon nanoparticles and label-free detection of sulfadiazine sodium
Qian Su, Feng Feng, Yunfeng Bai, Jimei Xiao, Xiaoming Yang Talanta . 2020 Dec 1;220:121410. doi: 10.1016/j.talanta.2020.121410.
Herein, silica nanoparticles (SiNPs) with blue-fluorescence have been originally synthesized through one facile hydrothermal way, and this kind of SiNPs were water-soluble with the relative quantum yield of around 6%. Meanwhile, N-(triethoxysilylpropyl) urea severed as the silica source, while potassium hydrogen phthalate as the doping reagent. Also, SiNPs exhibited the acceptable stability and excitation-dependent fluorescence property. Moreover, their surfaces of the obtained SiNPs were equipped with multiple functional groups including -Si-O-Si-, -Si-H, -COOH, -NH2and -OH. Importantly, the fluorescence of SiNPs could be specifically quenched by sulfadiazine sodium (SD-Na), thus achieving a label-free detection of SD-Na, which displayed a wide linear response in the range of 0.8 μM-800 μM with a detection limit of 1.02 μM. Additionally, we explored the mechanism of SiNPs sensing SD-Na on the basis of aggregation-induced quenching. To be specific, the particle size of SiNPs increased from 29.9 nm to 203.7 nm induced by the electrostatic interactions between SiNPs and SD-Na, which was further confirmed by high resolution transmission electron microscopy. Consequently, the proposed strategy here broadened the ways of assaying sulfadiazine sodium.