Sulopenem

Sulopenem

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Sulopenem
Category Antibiotics
Catalog number BBF-03888
CAS 120788-07-0
Molecular Weight 349.45
Molecular Formula C12H15NO5S3
Purity ≥98% by HPLC

Ordering Information

Catalog Number Size Price Stock Quantity
BBF-03888 100 mg $939 In stock

Online Inquiry

Add to cart

Description

Sulopenem is a penem antibiotic and a β-lactamase inhibitor produced by Penicillium. Sulopenem showed potent antibacterial activity against gram-positive and gram-negative bacteria except Pseudomonas aeruginosa and Xanthomonas maltophilia.

Specification

Synonyms CP-70429
Storage Store at -20°C
IUPAC Name (5R,6S)-6-[(1R)-1-hydroxyethyl]-7-oxo-3-[(1R,3S)-1-oxothiolan-3-yl]sulfanyl-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
Canonical SMILES CC(C1C2N(C1=O)C(=C(S2)SC3CCS(=O)C3)C(=O)O)O
InChI InChI=1S/C12H15NO5S3/c1-5(14)7-9(15)13-8(11(16)17)12(20-10(7)13)19-6-2-3-21(18)4-6/h5-7,10,14H,2-4H2,1H3,(H,16,17)/t5-,6+,7+,10-,21-/m1/s1
InChI Key FLSUCZWOEMTFAQ-PRBGKLEPSA-N

Properties

Appearance White to Beige Powder
Antibiotic Activity Spectrum Gram-positive bacteria; Gram-negative bacteria
Boiling Point 693.1°C at 760 mmHg
Density 1.74 g/cm3
Solubility Soluble in DMSO

Reference Reading

1. Comparative antipneumococcal activities of sulopenem and other drugs
Peter C Appelbaum, Lois M Ednie, Pamela McGhee, Klaudia Kosowska-Shick Antimicrob Agents Chemother . 2009 Jun;53(6):2239-47. doi: 10.1128/AAC.01531-08.
For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC(50)s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC(90)s were 0.016, 0.25, and 0.5 microg/ml, respectively. The MIC(50)s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 microg/ml, respectively, and the MIC(90)s were 0.03, 1.0, and 8.0 microg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ss-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC(50)s and MIC(90)s of 1.0 and 2.0 microg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2x MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs.
2. Sulopenem: An Intravenous and Oral Penem for the Treatment of Urinary Tract Infections Due to Multidrug-Resistant Bacteria
Denice Bay, George G Zhanel, Joseph P Lynch 3rd, Marianna Pozdirca, Frank Schweizer, Heather Adam, Alyssa R Golden, Courtney K Lawrence, Michael A Zhanel, Liam Berry, Andrew Walkty, Philippe Lagacé-Wiens, Kurt Naber, James A Karlowsky, Sheryl Zelenitsky, Neal Irfan Drugs . 2022 Apr;82(5):533-557. doi: 10.1007/s40265-022-01688-1.
Sulopenem (formerly known as CP-70,429, and CP-65,207 when a component of a racemic mixture with its R isomer) is an intravenous and oral penem that possesses in vitro activity against fluoroquinolone-resistant, extended spectrum β-lactamases (ESBL)-producing, multidrug-resistant (MDR) Enterobacterales. Sulopenem is being developed to treat patients with uncomplicated and complicated urinary tract infections (UTIs) as well as intra-abdominal infections. This review will focus mainly on its use in UTIs. The chemical structure of sulopenem shares properties of penicillins, cephalosporins, and carbapenems. Sulopenem is available as an oral prodrug formulation, sulopenem etzadroxil, which is hydrolyzed by intestinal esterases, resulting in active sulopenem. In early studies, the S isomer of CP-65,207, later developed as sulopenem, demonstrated greater absorption, higher drug concentrations in the urine, and increased stability against the renal enzyme dehydropeptidase-1 compared with the R isomer, which set the stage for its further development as a UTI antimicrobial. Sulopenem is active against both Gram-negative and Gram-positive microorganisms. Sulopenem's β-lactam ring alkylates the serine residues of penicillin-binding protein (PBP), which inhibits peptidoglycan cross-linking. Due to its ionization and low molecular weight, sulopenem passes through outer membrane proteins to reach PBPs of Gram-negative bacteria. While sulopenem activity is unaffected by many β-lactamases, resistance arises from alterations in PBPs (e.g., methicillin-resistant Staphylococcus aureus [MRSA]), expression of carbapenemases (e.g., carbapenemase-producing Enterobacterales and in Stenotrophomonas maltophilia), reduction in the expression of outer membrane proteins (e.g., some Klebsiella spp.), and the presence of efflux pumps (e.g., MexAB-OprM in Pseudomonas aeruginosa), or a combination of these mechanisms. In vitro studies have reported that sulopenem demonstrates greater activity than meropenem and ertapenem against Enterococcus faecalis, Listeria monocytogenes, methicillin-susceptible S. aureus (MSSA), and Staphylococcus epidermidis, as well as similar activity to carbapenems against Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes. With some exceptions, sulopenem activity against Gram-negative aerobes was less than ertapenem and meropenem but greater than imipenem. Sulopenem activity against Escherichia coli carrying ESBL, CTX-M, or Amp-C enzymes, or demonstrating MDR phenotypes, as well as against ESBL-producing Klebsiella pneumoniae, was nearly identical to ertapenem and meropenem and greater than imipenem. Sulopenem exhibited identical or slightly greater activity than imipenem against many Gram-positive and Gram-negative anaerobes, including Bacteroides fragilis. The pharmacokinetics of intravenous sulopenem appear similar to carbapenems such as imipenem-cilastatin, meropenem, and doripenem. In healthy subjects, reported volumes of distribution (Vd) ranged from 15.8 to 27.6 L, total drug clearances (CLT) of 18.9-24.9 L/h, protein binding of approximately 10%, and elimination half-lives (t½) of 0.88-1.03 h. The estimated renal clearance (CLR) of sulopenem is 8.0-10.6 L/h, with 35.5% ± 6.7% of a 1000 mg dose recovered unchanged in the urine. An ester prodrug, sulopenem etzadroxil, has been developed for oral administration. Initial investigations reported a variable oral bioavailability of 20-34% under fasted conditions, however subsequent work showed that bioavailability is significantly improved by administering sulopenem with food to increase its oral absorption or with probenecid to reduce its renal tubular secretion. Food consumption increases the area under the curve (AUC) of oral sulopenem (500 mg twice daily) by 23.6% when administered alone and 62% when administered with 500 mg of probenecid. Like carbapenems, sulopenem demonstrates bactericidal activity that is associated with the percentage of time that free concentrations exceed the MIC (%f T > MIC). In animal models, bacteriostasis was associated with %f T > MICs ranging from 8.6 to 17%, whereas 2-log10kill was seen at values ranging from 12 to 28%. No pharmacodynamic targets have been documented for suppression of resistance. Sulopenem concentrations in urine are variable, ranging from 21.8 to 420.0 mg/L (median 84.4 mg/L) in fasted subjects and 28.8 to 609.0 mg/L (median 87.3 mg/L) in those who were fed. Sulopenem has been compared with carbapenems and cephalosporins in guinea pig and murine systemic and lung infection animal models. Studied pathogens included Acinetobacter calcoaceticus, B. fragilis, Citrobacter freundii, Enterobacter cloacae, E. coli, K. pneumoniae, Proteus vulgaris, and Serratia marcescens. These studies reported that overall, sulopenem was non-inferior to carbapenems but appeared to be superior to cephalosporins. A phase III clinical trial (SURE-1) reported that sulopenem was not non-inferior to ciprofloxacin in women infected with fluoroquinolone-susceptible pathogens, due to a higher rate of asymptomatic bacteriuria in sulopenem-treated patients at the test-of-cure visit. However, the researchers reported superiority of sulopenem etzadroxil/probenecid over ciprofloxacin for the treatment of uncomplicated UTIs in women infected with fluoroquinolone/non-susceptible pathogens, and non-inferiority in all patients with a positive urine culture. A phase III clinical trial (SURE-2) compared intravenous sulopenem followed by oral sulopenem etzadroxil/probenecid with ertapenem in the treatment of complicated UTIs. No difference in overall success was noted at the end of therapy. However, intravenous sulopenem followed by oral sulopenem etzadroxil was not non-inferior to ertapenem followed by oral stepdown therapy in overall success at test-of-cure due to a higher rate of asymptomatic bacteriuria in the sulopenem arm. After a meeting with the US FDA, Iterum stated that they are currently evaluating the optimal design for an additional phase III uncomplicated UTI study to be conducted prior to the potential resubmission of the New Drug Application (NDA). It is unclear at this time whether Iterum intends to apply for EMA or Japanese regulatory approval. The safety and tolerability of sulopenem has been reported in various phase I pharmacokinetic studies and phase III clinical trials. Sulopenem (intravenous and oral) appears to be well tolerated in healthy subjects, with and without the coadministration of probenecid, with few serious drug-related treatment-emergent adverse events (TEAEs) reported to date. Reported TEAEs affecting ≥1% of patients were (from most to least common) diarrhea, nausea, headache, vomiting and dizziness. Discontinuation rates were low and were not different than comparator agents. Sulopenem administered orally and/or intravenously represents a potentially well tolerated and effective option for treating uncomplicated and complicated UTIs, especially in patients with documented or highly suspected antimicrobial pathogens to commonly used agents (e.g. fluoroquinolone-resistant E. coli), and in patients with documented microbiological or clinical failure or patients who demonstrate intolerance/adverse effects to first-line agents. This agent will likely be used orally in the outpatient setting, and intravenously followed by oral stepdown in the hospital setting. Sulopenem also allows for oral stepdown therapy in the hospital setting from intravenous non-sulopenem therapy. More clinical data are required to fully assess the clinical efficacy and safety of sulopenem, especially in patients with complicated UTIs caused by resistant pathogens such as ESBL-producing, Amp-C, MDR E. coli. Antimicrobial stewardship programs will need to create guidelines for when this oral and intravenous penem should be used.
3. In Vitro Activity of Sulopenem, an Oral Penem, against Urinary Isolates of Escherichia coli
George G Zhanel, Philippe R S Lagacé-Wiens, Sailaja Puttagunta, Melanie R Baxter, Andrew J Walkty, Andrew J Denisuik, James A Karlowsky, Heather J Adam, Michael W Dunne Antimicrob Agents Chemother . 2018 Dec 21;63(1):e01832-18. doi: 10.1128/AAC.01832-18.
Thein vitroactivity of sulopenem was assessed against a collection from 2014 to 2016 of 539 urinary isolates ofEscherichia colifrom Canadian patients by using CLSI-defined broth microdilution methodology. A concentration of sulopenem 0.03 µg/ml inhibited both 50% (MIC50) and 90% (MIC90) of isolates tested; sulopenem MICs ranged from 0.015 to 0.25 µg/ml. Thein vitroactivity of sulopenem was unaffected by nonsusceptibility to trimethoprim-sulfamethoxazole and/or ciprofloxacin, multidrug-resistant phenotypes, extended-spectrum β-lactamases, or AmpC β-lactamases.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket