Surfactin

Surfactin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Surfactin
Category Antibiotics
Catalog number BBF-04111
CAS 24730-31-2
Molecular Weight 1036.34
Molecular Formula C53H93N7O13

Online Inquiry

Description

Surfactin is a lipopeptide antibiotic and biosurfactant from Bacillus subtilis.

Specification

Synonyms surfactin C
Storage Store at -20°C, Under Inert Atmosphere
IUPAC Name 3-[(3S,6R,9S,12S,15R,18S,21S,25R)-9-(carboxymethyl)-3,6,15,18-tetrakis(2-methylpropyl)-25-(10-methylundecyl)-2,5,8,11,14,17,20,23-octaoxo-12-propan-2-yl-1-oxa-4,7,10,13,16,19,22-heptazacyclopentacos-21-yl]propanoic acid
Canonical SMILES CC(C)CCCCCCCCCC1CC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)O1)CC(C)C)CC(C)C)CC(=O)O)C(C)C)CC(C)C)CC(C)C)CCC(=O)O
InChI InChI=1S/C53H93N7O13/c1-30(2)20-18-16-14-13-15-17-19-21-36-28-43(61)54-37(22-23-44(62)63)47(66)55-38(24-31(3)4)48(67)57-40(26-33(7)8)51(70)60-46(35(11)12)52(71)58-41(29-45(64)65)50(69)56-39(25-32(5)6)49(68)59-42(27-34(9)10)53(72)73-36/h30-42,46H,13-29H2,1-12H3,(H,54,61)(H,55,66)(H,56,69)(H,57,67)(H,58,71)(H,59,68)(H,60,70)(H,62,63)(H,64,65)/t36-,37+,38+,39-,40-,41+,42+,46+/m1/s1
InChI Key NJGWOFRZMQRKHT-WGVNQGGSSA-N

Properties

Appearance White Solid
Antibiotic Activity Spectrum Gram-positive bacteria; Gram-negative bacteria; Fungi; Viruses; neoplastics (Tumor); mycoplasma
Boiling Point 1268.3±65.0°C at 760 mmHg
Melting Point 140-144°C
Density 1.0±0.1 g/cm3
Solubility Soluble in DMF, DMSO, methanol, ethanol

Reference Reading

1. Available strategies for improving the biosynthesis of surfactin: a review
Li Xia, Jianping Wen Crit Rev Biotechnol . 2022 Aug 24;1-18. doi: 10.1080/07388551.2022.2095252.
Surfactin is an excellent biosurfactant with a wide range of application prospects in many industrial fields. However, its low productivity and high cost have largely limited its commercial applications. In this review, the pathways for surfactin synthesis inBacillusstrains are summarized and discussed. Further, the latest strategies for improving surfactin production, including: medium optimization, genome engineering methods (rational genetic engineering, genome reduction, and genome shuffling), heterologous synthesis, and the use of synthetic biology combined with metabolic engineering approaches to construct high-quality artificial cells for surfactin production using xylose, are described. Finally, the prospects for improving surfactin synthesis are discussed in detail.
2. Surfactin: biosynthesis, genetics and potential applications
Ramkrishna Sen Adv Exp Med Biol . 2010;672:316-23. doi: 10.1007/978-1-4419-5979-9_24.
Even after forty years of its discovery by Arima et al, surfactin, a potent lipopeptide biosurfactant, still attracts attention and fancy of the applied microbiologists and biotechnologists worldwide, mainly due to its versatile bioactive properties and potential industrial implications. Starting from its first invented characteristic as an inhibitor of fibrin clot formation coupled with its significant ability to reduce surface tension of water, it has been credited with antifungal, antiviral, antitumor, insecticidal and antimycoplasma activities. These properties of therapeutic and commercial importance and its recent use as an enhanced oil recovery and a bioremediation agent make it a truly versatile biomolecule, the commercial potential of which could not be fully realized, particularly as a therapeutic agent, mainly because of its hemolytic property. This chapter thus addresses the issues related to the versatile nature of the most studied microbial surfactant, surfactin and its potential commercial and health-care applications.
3. Surfactin exerts an anti-cancer effect through inducing allergic reactions in melanoma skin cancer
Hyung-Min Kim, Hyun-Ja Jeong, Hanchul Jung, Hee-Yun Kim Int Immunopharmacol . 2021 Oct;99:107934. doi: 10.1016/j.intimp.2021.107934.
Surfactin is a mast cell degranulator, that increases the immune response via the degranulation of mast cells. Recently, numerous studies reported that allergic reactions play an important role in the reduction of melanoma development. So, this study aimed to investigate the anti-cancer effects of surfactin in a melanoma skin cancer in vivo model and a melanoma cell line, B16F10. Oral administration of surfactin significantly increased survival rate and reduced tumor growth and tumor weight on melanoma skin cancer in vivo model. Surfactin significantly increased infiltration of mast cells and levels of histamine. Surfactin significantly enhanced levels of IgE and immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, and tumor necrosis factor-α in serum and melanoma tissues. Activities of caspase-3, 8, and 9 were significantly enhanced by oral administration of surfactin. In vitro model, surfactin significantly increased B16F10 cell death via activation of caspase-3, 8, and 9 in a dose-dependent manner. Overall, our results indicate that surfactin has a significant anti-cancer effect on melanoma skin cancer through indirectly or directly inducing apoptosis of B16F10 melanoma cells. Also, these findings suggest that it will contribute to a novel perception into the role of allergic reactions in melanoma.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket