Tetrahymanol

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Tetrahymanol
Category Others
Catalog number BBF-04471
CAS 2130-17-8
Molecular Weight 428.73
Molecular Formula C30H52O
Purity 98.0%

Online Inquiry

Description

Tetrahymanol is a natural compound isolated from Rhodopseudomonas palustris.

Specification

Synonyms Gammaceran-3β-ol; Wallichiniol; gammaceran-3beta-ol; 5α-Gammaceran-3β-ol; Gammaceran-3-ol, (3β)-
Storage Store at -20°C
IUPAC Name (3S,4aR,6aR,6aR,6bR,8aS,12aS,14aR,14bR)-4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,8a,10,11,12,13,14,14a-hexadecahydropicen-3-ol
Canonical SMILES CC1(CCCC2(C1CCC3(C2CCC4C3(CCC5C4(CCC(C5(C)C)O)C)C)C)C)C
InChI InChI=1S/C30H52O/c1-25(2)15-9-16-27(5)20(25)12-18-29(7)22(27)10-11-23-28(6)17-14-24(31)26(3,4)21(28)13-19-30(23,29)8/h20-24,31H,9-19H2,1-8H3/t20-,21-,22+,23+,24-,27-,28-,29+,30+/m0/s1
InChI Key BFNSRKHIVITRJP-VJBYBJRLSA-N

Properties

Appearance Powder
Boiling Point 478.4°C at 760 mmHg
Density 0.958 g/cm3
Solubility Soluble in Chloroform

Reference Reading

1. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen
Kiyotaka Takishita, Yoshito Chikaraishi, Michelle M Leger, Eunsoo Kim, Akinori Yabuki, Naohiko Ohkouchi, Andrew J Roger Biol Direct. 2012 Feb 1;7:5. doi: 10.1186/1745-6150-7-5.
Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes.
2. A distinct pathway for tetrahymanol synthesis in bacteria
Amy B Banta, Jeremy H Wei, Paula V Welander Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13478-83. doi: 10.1073/pnas.1511482112. Epub 2015 Oct 19.
Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the ciliate Tetrahymena pyriformis whose potential diagenetic product, gammacerane, is often used as a biomarker for water column stratification in ancient ecosystems. Bacteria are also a potential source of tetrahymanol, but neither the distribution of this lipid in extant bacteria nor the significance of bacterial tetrahymanol synthesis for interpreting gammacerane biosignatures is known. Here we couple comparative genomics with genetic and lipid analyses to link a protein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial genomes, including aerobic methanotrophs, nitrite-oxidizers, and sulfate-reducers, and in a subset of aquatic and terrestrial metagenomes. Thus, the potential to produce tetrahymanol is more widespread in the bacterial domain than previously thought. However, Ths is not encoded in any eukaryotic genomes, nor is it homologous to eukaryotic squalene-tetrahymanol cyclase, which catalyzes the cyclization of squalene directly to tetrahymanol. Rather, heterologous expression studies suggest that bacteria couple the cyclization of squalene to a hopene molecule by squalene-hopene cyclase with a subsequent Ths-dependent ring expansion to form tetrahymanol. Thus, bacteria and eukaryotes have evolved distinct biochemical mechanisms for producing tetrahymanol.
3. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae
Sanne J Wiersma, Christiaan Mooiman, Martin Giera, Jack T Pronk Appl Environ Microbiol. 2020 Aug 18;86(17):e00672-20. doi: 10.1128/AEM.00672-20. Print 2020 Aug 18.
Biosynthesis of sterols, which are considered essential components of virtually all eukaryotic membranes, requires molecular oxygen. Anaerobic growth of the yeast Saccharomyces cerevisiae therefore strictly depends on sterol supplementation of synthetic growth media. Neocallimastigomycota are a group of strictly anaerobic fungi which, instead of containing sterols, contain the pentacyclic triterpenoid "sterol surrogate" tetrahymanol, which is formed by cyclization of squalene. Here, we demonstrate that expression of the squalene-tetrahymanol cyclase gene TtTHC1 from the ciliate Tetrahymena thermophila enables synthesis of tetrahymanol by S. cerevisiae Moreover, expression of TtTHC1 enabled exponential growth of anaerobic S. cerevisiae cultures in sterol-free synthetic media. After deletion of the ERG1 gene from a TtTHC1-expressing S. cerevisiae strain, native sterol synthesis was abolished and sustained sterol-free growth was demonstrated under anaerobic as well as aerobic conditions. Anaerobic cultures of TtTHC1-expressing S. cerevisiae on sterol-free medium showed lower specific growth rates and biomass yields than ergosterol-supplemented cultures, while their ethanol yield was higher. This study demonstrated that acquisition of a functional squalene-tetrahymanol cyclase gene offers an immediate growth advantage to S. cerevisiae under anaerobic, sterol-limited conditions and provides the basis for a metabolic engineering strategy to eliminate the oxygen requirements associated with sterol synthesis in yeasts.IMPORTANCE The laboratory experiments described in this report simulate a proposed horizontal gene transfer event during the evolution of strictly anaerobic fungi. The demonstration that expression of a single heterologous gene sufficed to eliminate anaerobic sterol requirements in the model eukaryote Saccharomyces cerevisiae therefore contributes to our understanding of how sterol-independent eukaryotes evolved in anoxic environments. This report provides a proof of principle for a metabolic engineering strategy to eliminate sterol requirements in yeast strains that are applied in large-scale anaerobic industrial processes. The sterol-independent yeast strains described in this report provide a valuable platform for further studies on the physiological roles and impacts of sterols and sterol surrogates in eukaryotic cells.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket