Tyrocidine A

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Antibiotics
Catalog number BBF-02731
CAS 1481-70-5
Molecular Weight 1270.47
Molecular Formula C66H87N13O13

Online Inquiry

Description

Tyrocidine A is a peptide antibiotic originally isolated from Bac. brevis. It is resistant to gram-positive bacteria and protozoa as well as to a lesser degree to gram-negative bacteria, and it is also resistant to yeast.

Specification

Synonyms TrcA; cyclo-(D-PheProPhe-D-PheAsnGlnTyrValOrnLeu); cyclo(L-asparaginyl-L-glutaminyl-L-tyrosyl-L-valyl-L-ornithyl-L-leucyl-D-phenylalanyl-L-prolyl-L-phenylalanyl-D-phenylalanyl)
IUPAC Name 3-[(3R,6S,9S,12S,15S,18S,21S,24R,27S,30S)-21-(2-amino-2-oxoethyl)-9-(3-aminopropyl)-3,24,27-tribenzyl-15-[(4-hydroxyphenyl)methyl]-6-(2-methylpropyl)-2,5,8,11,14,17,20,23,26,29-decaoxo-12-propan-2-yl-1,4,7,10,13,16,19,22,25,28-decazabicyclo[28.3.0]tritriacontan-18-yl]propanamide
Canonical SMILES CC(C)CC1C(=O)NC(C(=O)N2CCCC2C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCN)C(C)C)CC3=CC=C(C=C3)O)CCC(=O)N)CC(=O)N)CC4=CC=CC=C4)CC5=CC=CC=C5)CC6=CC=CC=C6
InChI InChI=1S/C66H87N13O13/c1-38(2)32-47-59(85)77-52(36-42-20-12-7-13-21-42)66(92)79-31-15-23-53(79)64(90)76-49(34-41-18-10-6-11-19-41)61(87)74-48(33-40-16-8-5-9-17-40)60(86)75-51(37-55(69)82)62(88)70-46(28-29-54(68)81)58(84)73-50(35-43-24-26-44(80)27-25-43)63(89)78-56(39(3)4)65(91)71-45(22-14-30-67)57(83)72-47/h5-13,16-21,24-27,38-39,45-53,56,80H,14-15,22-23,28-37,67H2,1-4H3,(H2,68,81)(H2,69,82)(H,70,88)(H,71,91)(H,72,83)(H,73,84)(H,74,87)(H,75,86)(H,76,90)(H,77,85)(H,78,89)/t45-,46-,47-,48+,49-,50-,51-,52+,53-,56-/m0/s1
InChI Key GSXRBRIWJGAPDU-BBVRJQLQSA-N

Properties

Antibiotic Activity Spectrum Gram-positive bacteria; Gram-negative bacteria; yeast

Reference Reading

1. Polymyxin B-inspired non-hemolytic tyrocidine A analogues with significantly enhanced activity against gram-negative bacteria: How cationicity impacts cell specificity and antibacterial mechanism
Jibao Zhu, Chengfei Hu, Zizhen Zeng, Xiaoyu Deng, Lingbing Zeng, Saisai Xie, Yuanying Fang, Yi Jin, Valérie Alezra, Yang Wan Eur J Med Chem. 2021 Oct 5;221:113488. doi: 10.1016/j.ejmech.2021.113488. Epub 2021 May 1.
Naturally occurring cyclic antimicrobial peptides (AMPs) such as tyrocidine A (Tyrc A) and gramicidin S (GS) are appealing targets for the development of novel antibiotics. However, their therapeutic potentials are limited by undesired hemolytic activity and relatively poor activity against Gram-negative bacteria. Inspired by polycationic lipopeptide polymyxin B (PMB), the so called 'last-resort' antibiotic for the treatment of infections caused by multidrug-resistant Gram-negative bacteria, we synthesized and biologically evaluated a series of polycationic analogues derived from Tyrc A. We were able to obtain peptide 8 that possesses 5 positive charges exhibiting potent activities against both Gram-negative and Gram-positive bacteria along with totally diminished hemolytic activity. Intriguingly, antibacterial mechanism studies revealed that, rather than the 'pore forming' model that possessed by Tyrc A, peptide 8 likely diffuses membrane in a 'detergent-like' manner. Furthermore, when treating mice with peritonitis-sepsis, peptide 8 showed excellent antibacterial and anti-inflammatory activities in vivo.
2. Novel Antiamoebic Tyrocidine-Derived Peptide against Brain-Eating Amoebae
Noor Akbar, Wendy E Kaman, Maarten Sarink, Kamran Nazmi, Floris J Bikker, Naveed Ahmed Khan, Ruqaiyyah Siddiqui ACS Omega. 2022 Aug 10;7(33):28797-28805. doi: 10.1021/acsomega.2c01614. eCollection 2022 Aug 23.
Acanthamoeba castellanii (A. castellanii) can cause Acanthamoeba keratitis, a sight-threatening infection, as well as a fatal brain infection termed granulomatous amoebic encephalitis, mostly in immunocompromised individuals. In contrast, Naegleria fowleri (N. fowleri) causes a deadly infection involving the central nervous system, recognized as primary amoebic encephalitis, mainly in individuals partaking in recreational water activities or those with nasal exposure to contaminated water. Worryingly, mortality rates due to these infections are more than 90%, suggesting the need to find alternative therapies. In this study, antiamoebic activity of a peptide based on the structure of the antibiotic tyrocidine was evaluated against A. castellanii and N. fowleri. The tyrocidine-derived peptide displayed significant amoebicidal efficacy against A. castellanii and N. fowleri. At 250 μg/mL, the peptide drastically reduced amoebae viability up to 13% and 21% after 2 h of incubation against N. fowleri and A. castellanii., whereas, after 24 h of incubation, the peptide showed 86% and 94% amoebicidal activity against A. castellanii and N. fowleri. Furthermore, amoebae pretreated with 100 μg/mL peptide inhibited 35% and 53% A. castellanii and N. fowleri, while, at 250 μg/mL, 84% and 94% A. castellanii and N. fowleri failed to adhere to human cells. Amoeba-mediated cell cytopathogenicity assays revealed 31% and 42% inhibition at 100 μg/mL, while at 250 μg/mL 75% and 86% A. castellanii and N. fowleri were inhibited. Assays revealed inhibition of encystation in both A. castellanii (58% and 93%) and N. fowleri (73% and 97%) at concentrations of 100 and 250 μg/mL respectively. Importantly, tyrocidine-derived peptide depicted minimal cytotoxicity to human cells and, thus, may be a potential candidate in the rational development of a treatment regimen against free-living amoebae infections. Future studies are necessary to elucidate the in vivo effects of tyrocidine-derived peptide against these and other pathogenic amoebae of importance.
3. Tyrocidine A interactions with saccharides investigated by CD and NMR spectroscopies
Dennis Wilkens Juhl, Wilma van Rensburg, Xavier Bossis, J Arnold Vosloo, Marina Rautenbach, Burkhard Bechinger J Pept Sci. 2019 May;25(5):e3163. doi: 10.1002/psc.3163. Epub 2019 Mar 18.
Tyrocidines are a family of cyclic decapeptides produced by the soil bacterium, Brevibacillus parabrevis. These antibiotic peptides can be used to prevent infections in agriculture and food industry but also to prepare antimicrobial lozenges, creams, and dressings for medical applications. It has been observed that the tyrocidines interact with saccharides such as cellulose from their soil environment, as well as sugars in culture media and glycans in fungal cell walls. Here, we investigated the interactions of tyrocidines with glucose, sucrose, and cellotetraose (as cellulose model) in a quantitative fashion utilising CD and NMR spectroscopy. The CD and NMR spectra of tyrocidine A (TrcA) were analysed as a function of solvent composition, and the spectral properties agree with the formation of oligomeric structures that are governed by β-sheet secondary structures once the acetonitrile content of the solvent is increased. Saccharides seem to also induce TrcA spectral changes reverting those induced by organic solvents. The CD spectral changes of TrcA in the presence of glucose agree with new ordered H-bonding, possibly β-sheet structures. The amides involved in intramolecular H-bonding remained largely unaffected by the environmental changes. In contrast, amides exposed to the exterior and/or involved in TrcA intermolecular association show the largest 1 H chemical shift changes. CD and NMR spectroscopic investigations correlated well with TrcA-glucose interactions characterized by a dissociation constant around 200 μM. Interestingly, the association of cellotetraose corresponds closely to the additive effect from four glucose moieties, while a much higher dissociation constant was observed for sucrose. Similar trends to TrcA for binding to the three saccharides were observed for the analogous tyrocidines, tyrocidine B, and tyrocidine C. These results therefore indicate that the tyrocidine interactions with the glucose monosaccharide unit are fairly specific and reversible.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket