Tyrocidine complex

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Tyrocidine complex
Category New Products
Catalog number BBF-04309
CAS 8011-61-8
Molecular Weight 1270.48 (for Tyrocidine A)
Molecular Formula C66H87N13O13 (for Tyrocidine A)
Purity >95% by HPLC

Online Inquiry

Description

It is a mixture of eight cationic cyclic decapeptides antibiotic produced by bacillus brevis. It has a broad spectrum of antimicrobial activity against gram-positive and Gram-negative bacteria. Tyrocidine A is the major component of the tyrothricin complex which is used for treatment of topical infection. It acts by disturbing lipid bilayers of the bacterial cell membrane.

Specification

Storage Store at -20°C
Canonical SMILES O=C(N1CCC[C@]1(C(N[C@@H](CC2=CC=CC=C2)C(N[C@]([H])(CC3=CC=CC=C3)C(N[C@@H](CC(N)=O)C(N[C@H]4CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC5=CC=CC=C5)NC([C@H](CC(C)C)NC([C@]([H])(CCCN)NC([C@H](C(C)C)NC([C@H](CC6=CC=C(C=C6)O)NC4=O)=O)=O)=O)=O.O=C(N7CCC[C@]7(C(N[C@@H](CC8=CC=CC=C8)C(N[C@]([H])(CC9=CC=CC=C9)C(N[C@@H](CC(N)=O)C(N[C@H]%10CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%11=CC=CC=C%11)NC([C@H](CC(C)C)NC([C@]([H])(CCCCN)NC([C@H](C(C)C)NC([C@H](CC%12=CC=C(C=C%12)O)NC%10=O)=O)=O)=O)=O.O=C(N%13CCC[C@]%13(C(N[C@@H](CC%14=CNC%15=C%14C=CC=C%15)C(N[C@]([H])(CC%16=CC=CC=C%16)C(N[C@@H](CC(N)=O)C(N[C@H]%17CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%18=CC=CC=C%18)NC([C@H](CC(C)C)NC([C@]([H])(CCCN)NC([C@H](C(C)C)NC([C@H](CC%19=CC=C(C=C%19)O)NC%17=O)=O)=O)=O)=O.O=C(N%20CCC[C@]%20(C(N[C@@H](CC%21=CNC%22=C%21C=CC=C%22)C(N[C@]([H])(CC%23=CC=CC=C%23)C(N[C@@H](CC(N)=O)C(N[C@H]%24CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%25=CC=CC=C%25)NC([C@H](CC(C)C)NC([C@]([H])(CCCCN)NC([C@H](C(C)C)NC([C@H](CC%26=CC=C(C=C%26)O)NC%24=O)=O)=O)=O)=O.O=C(N%27CCC[C@]%27(C(N[C@@H](CC%28=CNC%29=C%28C=CC=C%29)C(N[C@]([H])(CC%30=CNC%31=C%30C=CC=C%31)C(N[C@@H](CC(N)=O)C(N[C@H]%32CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%33=CC=CC=C%33)NC([C@H](CC(C)C)NC([C@]([H])(CCCN)NC([C@H](C(C)C)NC([C@H](CC%34=CC=C(C=C%34)O)NC%32=O)=O)=O)=O)=O.O=C(N%35CCC[C@]%35(C(N[C@@H](CC%36=CNC%37=C%36C=CC=C%37)C(N[C@]([H])(CC%38=CNC%39=C%38C=CC=C%39)C(N[C@@H](CC(N)=O)C(N[C@H]%40CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%41=CC=CC=C%41)NC([C@H](CC(C)C)NC([C@]([H])(CCCCN)NC([C@H](C(C)C)NC([C@H](CC%42=CC=C(C=C%42)O)NC%40=O)=O)=O)=O)=O.O=C(N%43CCC[C@]%43(C(N[C@@H](CC%44=CNC%45=C%44C=CC=C%45)C(N[C@]([H])(CC%46=CNC%47=C%46C=CC=C%47)C(N[C@@H](CC(N)=O)C(N[C@H]%48CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%49=CC=CC=C%49)NC([C@H](CC(C)C)NC([C@]([H])(CCCN)NC([C@H](C(C)C)NC([C@H](CC%50=CNC%51=C%50C=CC=C%51)NC%48=O)=O)=O)=O)=O.O=C(N%52CCC[C@]%52(C(N[C@@H](CC%53=CC=CC=C%53)C(N[C@]([H])(CC%54=CC=CC=C%54)C(N[C@@H](CC(N)=O)C(N[C@H]%55CCC(N)=O)=O)=O)=O)=O)[H])[C@@]([H])(CC%56=CC=CC=C
InChI InChI=1S/C72H90N16O12.C71H91N15O13.C70H89N15O13.C69H90N14O13.C68H88N14O13.C67H89N13O13.C66H87N13O13.C66H87N13O12/c1-39(2)30-53-65(93)86-58(31-41-16-6-5-7-17-41)72(100)88-29-15-25-59(88)70(98)85-55(33-43-37-77-49-22-12-9-19-46(43)49)67(95)83-54(32-42-36-76-48-21-11-8-18-45(42)48)66(94)84-57(35-61(75)90)68(96)79-52(26-27-60(74)89)64(92)82-56(34-44-38-78-50-23-13-10-20-47(44)50)69(97)87-62(40(3)4)71(99)80-51(24-14-28-73)63(91)81-53;1-39(2)31-52-64(92)84-57(33-41-15-6-5-7-16-41)71(99)86-30-14-22-58(86)69(97)83-55(35-44-38-76-49-20-11-9-18-47(44)49)66(94)81-54(34-43-37-75-48-19-10-8-17-46(43)48)65(93)82-56(36-60(74)89)67(95)77-51(27-28-59(73)88)63(91)80-53(32-42-23-25-45(87)26-24-42)68(96)85-61(40(3)4)70(98)78-50(62(90)79-52)21-12-13-29-72;1-38(2)30-51-63(91)83-56(32-40-14-6-5-7-15-40)70(98)85-29-13-21-57(85)68(96)82-54(34-43-37-75-48-19-11-9-17-46(43)48)65(93)80-53(33-42-36-74-47-18-10-8-16-45(42)47)64(92)81-55(35-59(73)88)66(94)76-50(26-27-58(72)87)62(90)79-52(31-41-22-24-44(86)25-23-41)67(95)84-60(39(3)4)69(97)77-49(20-12-28-71)61(89)78-51;1-39(2)32-50-62(89)81-55(35-42-18-9-6-10-19-42)69(96)83-31-15-23-56(83)67(94)80-53(36-44-38-73-47-21-12-11-20-46(44)47)64(91)78-51(33-41-16-7-5-8-17-41)63(90)79-54(37-58(72)86)65(92)74-49(28-29-57(71)85)61(88)77-52(34-43-24-26-45(84)27-25-43)66(93)82-59(40(3)4)68(95)75-48(60(87)76-50)22-13-14-30-70;1-38(2)31-49-61(88)80-54(34-41-17-9-6-10-18-41)68(95)82-30-14-22-55(82)66(93)79-52(35-43-37-72-46-20-12-11-19-45(43)46)63(90)77-50(32-40-15-7-5-8-16-40)62(89)78-53(36-57(71)85)64(91)73-48(27-28-56(70)84)60(87)76-51(33-42-23-25-44(83)26-24-42)65(92)81-58(39(3)4)67(94)74-47(21-13-29-69)59(86)75-49;1-39(2)33-48-60(86)78-53(37-43-21-12-7-13-22-43)67(93)80-32-16-24-54(80)65(91)77-50(35-42-19-10-6-11-20-42)62(88)75-49(34-41-17-8-5-9-18-41)61(87)76-52(38-56(70)83)63(89)71-47(29-30-55(69)82)59(85)74-51(36-44-25-27-45(81)28-26-44)64(90)79-57(40(3)4)66(92)72-46(58(84)73-48)23-14-15-31-68;1-38(2)32-47-59(85)77-52(36-42-20-12-7-13-21-42)66(92)79-31-1
InChI Key LKZMBWNSWABCPV-NJCGKMJWSA-N
Source Bacillus brevis

Properties

Appearance White Solid
Antibiotic Activity Spectrum Gram-positive bacteria; Gram-negative bacteria
Solubility Soluble in Ethanol, Methanol, DMF, DMSO

Reference Reading

1. Isolation of a peptidyl-pantetheine-protein from tyrocidine-synthesizing polyenzymes
F Lipmann, S G Lee Proc Natl Acad Sci U S A . 1974 Mar;71(3):607-11. doi: 10.1073/pnas.71.3.607.
The polyenzyme complex responsible for the synthesis of tyrocidine in Bacillus brevis (ATCC 8185) was found to contain 4'-phosphopantetheine, which appeared to be connected with the production of growing peptide chains. Confirmation of this assumption has now been obtained by purifying from bacterial lysates a polyenzyme-dissociation product; this was labeled with [(14)C]pantothenic acid and peptide chains containing tritiated amino acids, and had a molecular weight of 17,000. To obtain these results, organisms were grown udner conditions favorable for incorporation of radioactive pantothenic acid into tyrocidine-synthesizing enzymes. A crude lysate of the [(14)C]pantothenic acid-labeled organisms was preincubated with the tritiated amino acids to form enzyme-bound growing peptide chains. The doubly labeled fragments were purified from the polyenzyme-dissociation products produced by prolonged lysis. In a second set of experiments, the three enzymes responsible for tyrocidine synthesis, including the two polyenzymes containing pantetheine, were purified and incubated with radioactive amino acids and ATP to form polyenzyme-bound peptide chains. Thereupon, a Triton X-100 extract of the 20,000 x g fraction of crude homogenate was added to dissociate the purified polyenzymes. The dissociation products were purified and yielded, on dodecyl sulfate gel electrophoresis, peptidyl-marked products ranging in molecular weight from 90,000 to 17,000, the latter being most abundant. Electrophoresis of analogous preparations after preincubation with higher concentrations of dodecyl sulfate and dithiothreitol at 100 degrees yielded a single product of 17,000 molecular weight, indicating that the larger molecular weight fractions were aggregates thereof.
2. Tyrocidine and the linear gramicidin. Do these peptide antibiotics play an antagonistic regulative role in sporulation?
H Kleikauf, K Bauer, H Ristow, B Schazschneider Biochim Biophys Acta . 1975 May 1;390(2):246-52.
1. The cyclic peptide antibiotic tyrocidine, synthesized by Bacillus brevis (ATCC 8185), inhibits RNA synthesis in an in vitro transcriptional system by forming a complex with the DNA. 2. The linear peptide antibiotic gramicidin, synthesized by the same strain, reverses at least partly this inhibition. The molecular mechanism of this reactivation is unknown. Gramicidin by itself inhibits transcription in vitro. This inhibition is not due to a complex formation between DNA and the peptide. 4. A possible regulative role of the two peptides in sporulation is discussed.
3. Interrelationships between tyrocidine and gramicidin A' in their interaction with phospholipids in model membranes
F J Aranda, B de Kruijff Biochim Biophys Acta . 1988 Jan 13;937(1):195-203. doi: 10.1016/0005-2736(88)90241-6.
(1) The interaction of tyrocidine with different lipids is studied in model membranes and the results are compared to the gramicinid-lipid interaction. (2) The tyrocidine-dielaidoylphosphatidylethanolamine interaction gives rise to a population of phospholipids with a lower gel to liquid-crystalline transition temperature and to an abolition of the bilayer to HII phase transition, resulting in a macroscopic organization with dynamic and structural properties different from those of the pure lipid. (3) Tyrocidine has a strong fluidizing effect on the acyl chains of phosphatidylcholines, manifested by a decrease in enthalpy of the main thermotropic transition. (4) No evidence of a gramicidin A'-like lipid-structure modulating activity was found. However, tyrocidine inhibits the formation by gramicidin of an HII phase in dioleoylphosphatidylcholine model membranes. Instead, a cubic type of lipid organization is observed. (5) Tyrocidine greatly perturbs the barrier properties of dioleoylphosphatidylcholine model membrane. (6) Gramicidin A' reverses the effect of tyrocidine on membrane permeability by forming a complex in the model membrane with an apparent 1:1 stoichiometry. (7) The results suggest that both peptide antibiotics, which are produced by Bacillus brevis ATC 8185 prior to sporulation, show antagonism in their effect on membrane structure similar to their effect on superhelical DNA (Bogh, A. and Ristow, H. (1986) Eur. J. Biochem. 160, 587-591. The possible underlying basic mechanism is indicated.

Recommended Products

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket