YM-254890
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Enzyme inhibitors |
Catalog number | BBF-01560 |
CAS | 568580-02-9 |
Molecular Weight | 960.1 |
Molecular Formula | C46H69N7O15 |
Online Inquiry
Description
YM-254890 is a selective Gαq/11 protein inhibitor isolated from Chromobacterium sp. QS3666. YM-254890 (1, 3, and 10 µg/kg) reduces platelet thrombus formation in a cynomolgus monkey model of femoral artery thrombosis.
Specification
IUPAC Name | [(1R)-1-[(3S,6S,9S,12S,18R,21S,22R)-21-acetamido-18-benzyl-3-[(1R)-1-methoxyethyl]-4,9,10,12,16,22-hexamethyl-15-methylidene-2,5,8,11,14,17,20-heptaoxo-1,19-dioxa-4,7,10,13,16-pentazacyclodocos-6-yl]-2-methylpropyl] (2S,3R)-2-acetamido-3-hydroxy-4-methylpentanoate |
Canonical SMILES | CC1C(C(=O)OC(C(=O)N(C(=C)C(=O)NC(C(=O)N(C(C(=O)NC(C(=O)N(C(C(=O)O1)C(C)OC)C)C(C(C)C)OC(=O)C(C(C(C)C)O)NC(=O)C)C)C)C)C)CC2=CC=CC=C2)NC(=O)C |
InChI | InChI=1S/C46H69N7O15/c1-22(2)37(56)34(49-30(11)55)45(63)68-38(23(3)4)35-43(61)53(14)36(28(9)65-15)46(64)66-27(8)33(48-29(10)54)44(62)67-32(21-31-19-17-16-18-20-31)42(60)52(13)25(6)39(57)47-24(5)41(59)51(12)26(7)40(58)50-35/h16-20,22-24,26-28,32-38,56H,6,21H2,1-5,7-15H3,(H,47,57)(H,48,54)(H,49,55)(H,50,58)/t24-,26-,27+,28+,32+,33-,34-,35-,36-,37+,38+/m0/s1 |
InChI Key | QVYLWCAYZGFGNF-WBWCVGBTSA-N |
Reference Reading
1. Functional evidence for biased inhibition of G protein signaling by YM-254890 in human coronary artery endothelial cells
Qianman Peng, Saud Alqahtani, Mohammed Zahid A Nasrullah, Jianzhong Shen Eur J Pharmacol. 2021 Jan 15;891:173706. doi: 10.1016/j.ejphar.2020.173706. Epub 2020 Nov 3.
Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex. However, functional selectivity of YM-254890 towards various G proteins was not fully characterized, primarily due to its restricted availability before 2017. Here, using human coronary artery endothelial cells as a model, we performed a systemic pharmacological evaluation on the functional selectivity of YM-254890 on multiple G protein-mediated receptor signaling. First, we confirmed that YM-254890, at 30 nM, abolished UTP-activated P2Y2 receptor-mediated Ca2+ signaling and ERK1/2 phosphorylation, indicating its potent inhibition on the Gq protein. However, we unexpectedly found that YM-254890 also significantly suppressed cAMP elevation and ERK1/2 phosphorylation induced by multiple Gs-coupled receptors including β2-adrenegic, adenosine A2 and PGI2 receptors. Surprisingly, although YM-254890 had no impact on CXCR4/Gi/o protein-mediated suppression of cAMP production, it abolished ERK1/2 activation. Further, no cellular toxicity was observed for YM-254890, and it neither affected A23187- or thapsigargin-induced Ca2+ signaling, nor forskolin-induced cAMP elevation and growth factor-induced MAPK signaling. We conclude that YM-254890 is not a selective inhibitor for Gq protein; instead, it acts as a broad-spectrum inhibitor for Gq and Gs proteins and exhibits a biased inhibition on Gi/o signaling, without affecting non-GPCR-mediated cellular signaling.
2. Inhibition of Human Prostate and Bladder Smooth Muscle Contraction, Vasoconstriction of Porcine Renal and Coronary Arteries, and Growth-Related Functions of Prostate Stromal Cells by Presumed Small Molecule Gαq/11 Inhibitor, YM-254890
Alexander Tamalunas, Amin Wendt, Florian Springer, Anna Ciotkowska, Beata Rutz, Ruixiao Wang, Ru Huang, Yuhan Liu, Heiko Schulz, Stephan Ledderose, Giuseppe Magistro, Christian G Stief, Martin Hennenberg Front Physiol. 2022 May 23;13:884057. doi: 10.3389/fphys.2022.884057. eCollection 2022.
Introduction: Lower urinary tract symptoms (LUTS) involve benign prostatic hyperplasia (BPH) and overactive bladder (OAB). Standard-of-care medical treatment includes α1-blockers and antimuscarinics for reduction of prostate and detrusor smooth muscle tone, respectively, and 5α-reductase inhibitors (5-ARI) to prevent prostate growth. Current medications are marked by high discontinuation rates due to unfavourable balance between efficacy and treatment-limiting side effects, ranging from dry mouth for antimuscarinics to cardiovascular dysregulation and a tendency to fall for α1-blockers, which results from hypotension, due to vasorelaxation. Agonist-induced smooth muscle contractions are caused by activation of receptor-coupled G-proteins. However, little is known about receptor- and organ-specific differences in coupling to G-proteins. With YM-254890, a small molecule inhibitor with presumed specificity for Gαq/11 became recently available. Here, we investigated effects of YM-254890 on prostate, bladder and vascular smooth muscle contraction, and on growth-related functions in prostate stromal cells. Methods: Contractions of human prostate and detrusor tissues, porcine renal and coronary arteries were induced in an organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). Results: Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were nearly completely inhibited by YM-254890 (30 nM) in prostate tissues. Contractions by cholinergic agonists, U46619, endothelin-1, and neurogenic contractions were only partly inhibited in detrusor tissues. Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were strongly, but not fully inhibited in renal arteries. Contractions by cholinergic agonists were completely, but by U46619 and endothelin-1 only strongly inhibited, and neurogenic contractions reduced by half in coronary arteries. YM-254890 had no effect on agonist-independent contractions induced by highmolar (80 mM) potassium chloride (KCl). Neurogenic detrusor contractions were fully sensitive to tetrodotoxin. In WPMY-1 cells, YM-254890 caused breakdown of actin polymerization and organization, and obvious, but clearly limited decreases of proliferation rate, colony formation and viability, and slightly increased apoptosis. Conclusion: Intracellular post-receptor signaling pathways are shared by Gαq-coupled contractile receptors in multiple smooth muscle-rich organs, but to different extent. While inhibition of Gαq/11 causes actin breakdown, anti-proliferative effects were detectable but clearly limited. Together this may aid in developing future pharmaceutical targets for LUTS and antihypertensive medication.
3. Enhanced membrane binding of oncogenic G protein αqQ209L confers resistance to inhibitor YM-254890
Clinita E Randolph, Morgan B Dwyer, Jenna L Aumiller, Alethia J Dixon, Asuka Inoue, Patrick Osei-Owusu, Philip B Wedegaertner J Biol Chem. 2022 Nov;298(11):102538. doi: 10.1016/j.jbc.2022.102538. Epub 2022 Sep 27.
Heterotrimeric G proteins couple activated G protein-coupled receptors (GPCRs) to intracellular signaling pathways. They can also function independently of GPCR activation upon acquiring mutations that prevent GTPase activity and result in constitutive signaling, as occurs with the αqQ209L mutation in uveal melanoma. YM-254890 (YM) can inhibit signaling by both GPCR-activated WT αq and GPCR-independent αqQ209L. Although YM inhibits WT αq by binding to αq-GDP and preventing GDP/GTP exchange, the mechanism of YM inhibition of cellular αqQ209L remains to be fully understood. Here, we show that YM promotes a subcellular redistribution of αqQ209L from the plasma membrane (PM) to the cytoplasm. To test if this loss of PM localization could contribute to the mechanism of inhibition of αqQ209L by YM, we developed and examined N-terminal mutants of αqQ209L, termed PM-restricted αqQ209L, in which the addition of membrane-binding motifs enhanced PM localization and prevented YM-promoted redistribution. Treatment of cells with YM failed to inhibit signaling by these PM-restricted αqQ209L. Additionally, pull-down experiments demonstrated that YM promotes similar conformational changes in both αqQ209L and PM-restricted αqQ209L, resulting in increased binding to βγ and decreased binding to regulator RGS2, and effectors p63RhoGEF-DH/PH and phospholipase C-β. GPCR-dependent signaling by PM-restricted WT αq is strongly inhibited by YM, demonstrating that resistance to YM inhibition by membrane-binding mutants is specific to constitutively active αqQ209L. Together, these results indicate that changes in membrane binding impact the ability of YM to inhibit αqQ209L and suggest that YM contributes to inhibition of αqQ209L by promoting its relocalization.
Recommended Products
BBF-04660 | Spinosyn L | Inquiry |
BBF-02582 | Polyporenic acid C | Inquiry |
BBF-03880 | Cyclopamine | Inquiry |
BBF-03427 | Tubercidin | Inquiry |
BBF-02800 | DB-2073 | Inquiry |
BBF-03781 | Resveratrol | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳