Antibiotic N-1
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-03683 |
CAS | 74290-44-1 |
Molecular Weight | 868.06 |
Molecular Formula | C45H73NO15 |
Online Inquiry
Description
Antibiotic N-1 is extracted from Streptomyces thermotolerans. It has the activity against gram-positive bacteria and mycoplasma.
Specification
Synonyms | Tylosin, 23-O-de(6-deoxy-2,3-di-O-methyl-b-D-allopyranosyl)-, 3-acetate 4B-(3-methylbutanoate) (9CI) |
IUPAC Name | [(2R,3S,4R,6S)-6-[(2R,3R,4R,5S,6S)-6-[[(4R,5R,6R,9S,11Z,13Z,15R,16R)-4-acetyloxy-16-ethyl-15-(hydroxymethyl)-5,9,13-trimethyl-2,10-dioxo-7-(2-oxoethyl)-1-oxacyclohexadeca-11,13-dien-6-yl]oxy]-4-(dimethylamino)-5-hydroxy-2-methyloxan-3-yl]oxy-4-hydroxy-2,4-dimethyloxan-3-yl] 3-methylbutanoate |
Canonical SMILES | CCC1C(C=C(C=CC(=O)C(CC(C(C(C(CC(=O)O1)OC(=O)C)C)OC2C(C(C(C(O2)C)OC3CC(C(C(O3)C)OC(=O)CC(C)C)(C)O)N(C)C)O)CC=O)C)C)CO |
InChI | InChI=1S/C45H73NO15/c1-13-34-32(23-48)19-25(4)14-15-33(50)26(5)20-31(16-17-47)41(27(6)35(57-30(9)49)21-37(52)58-34)61-44-40(53)39(46(11)12)42(28(7)56-44)60-38-22-45(10,54)43(29(8)55-38)59-36(51)18-24(2)3/h14-15,17,19,24,26-29,31-32,34-35,38-44,48,53-54H,13,16,18,20-23H2,1-12H3/b15-14-,25-19-/t26-,27+,28+,29+,31?,32+,34+,35+,38-,39+,40-,41-,42-,43-,44+,45+/m0/s1 |
InChI Key | NULCSEGISRITNK-WZDQKIGBSA-N |
Properties
Appearance | White Powder |
Antibiotic Activity Spectrum | Gram-positive bacteria; mycoplasma |
Boiling Point | 915.4°C at 760 mmHg |
Melting Point | 115-118°C |
Density | 1.2 g/cm3 |
Reference Reading
1. Comparative Studies to Uncover Mechanisms of Action of N-(1,3,4-Oxadiazol-2-yl)benzamide Containing Antibacterial Agents
George A Naclerio, Kenneth I Onyedibe, Caroline W Karanja, Uma K Aryal, Herman O Sintim ACS Infect Dis. 2022 Apr 8;8(4):865-877. doi: 10.1021/acsinfecdis.1c00613. Epub 2022 Mar 17.
Drug-resistant bacterial pathogens still cause high levels of mortality annually despite the availability of many antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is especially problematic, and the rise in resistance to front-line treatments like vancomycin and linezolid calls for new chemical modalities to treat chronic and relapsing MRSA infections. Halogenated N-(1,3,4-oxadiazol-2-yl)benzamides are an interesting class of antimicrobial agents, which have been described by multiple groups to be effective against different bacterial pathogens. The modes of action of a few N-(1,3,4-oxadiazol-2-yl)benzamides have been elucidated. For example, oxadiazoles KKL-35 and MBX-4132 have been described as inhibitors of trans-translation (a ribosome rescue pathway), while HSGN-94 was shown to inhibit lipoteichoic acid (LTA). However, other similarly halogenated N-(1,3,4-oxadiazol-2-yl)benzamides neither inhibit trans-translation nor LTA biosynthesis but are potent antimicrobial agents. For example, HSGN-220, -218, and -144 are N-(1,3,4-oxadiazol-2-yl)benzamides that are modified with OCF3, SCF3, or SF5 and have remarkable minimum inhibitory concentrations ranging from 1 to 0.06 μg/mL against MRSA clinical isolates and show a low propensity to develop resistance to MRSA over 30 days. The mechanism of action of these highly potent oxadiazoles is however unknown. To provide insights into how these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides inhibit bacterial growth, we performed global proteomics and RNA expression analysis of some essential genes of S. aureus treated with HSGN-220, -218, and -144. These studies revealed that the oxadiazoles HSGN-220, -218, and -144 are multitargeting antibiotics that regulate menaquinone biosynthesis and other essential proteins like DnaX, Pol IIIC, BirA, LexA, and DnaC. In addition, these halogenated N-(1,3,4-oxadiazol-2-yl)benzamides were able to depolarize bacterial membranes and regulate siderophore biosynthesis and heme regulation. Iron starvation appears to be part of the mechanism of action that led to bacterial killing. This study demonstrates that N-(1,3,4-oxadiazol-2-yl)benzamides are indeed privileged scaffolds for the development of antibacterial agents and that subtle modifications lead to changes to the mechanism of action.
2. N-([1,1'-biaryl]-4-yl)-1-naphthamide-based scaffolds synthesis, their cheminformatics analyses, and screening as bacterial biofilm inhibitor
Saba Ejaz, Muhammad Zubair, Nasir Rasool, Faiz Ahmed, Muhammad Bilal, Gulraiz Ahmad, Ataf A Altaf, Syed A A Shah, Komal Rizwan J Basic Microbiol. 2022 Sep;62(9):1143-1155. doi: 10.1002/jobm.202100288. Epub 2021 Nov 1.
Naphthamides have pharmacological potential as they express strong activities against microorganisms. The commercially available naphthoyl chloride and 4-bromoaniline were condensed in dry dichloromethane (DCM) in the presence of Et3 N to form N-(4-bromophenyl)-1-naphthamide (86%) (3). Using a Pd(0) catalyzed Suzuki-Miyaura Cross-Coupling reaction of (3) and various boronic acids, a series of N-([1,1'-biaryl]-4-yl)-1-naphthamide derivatives (4a-h) were synthesized in moderate to good yields. The synthesized derivatives were evaluated for cytotoxicity haemolytic assay and biofilm inhibition activity through in silico and in vitro studies. Molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity risk, and other cheminformatics predict synthesized molecules as biologically active moieties, further validated through in vitro studies in which compounds (4c) and (4f) showed significant haemolytic activity whereas (4e) exhibited an efficient biofilm inhibition activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. When forming biofilms, bacteria become resistant to various antimicrobial treatments. Currently, research is focused on the development of agents that inhibit biofilm formation, thus the present work is valuable for preventing future drug resistance.
3. Efficacy and safety of switching from intravenous to oral antibiotics (amoxicillin-clavulanic acid) versus a full course of intravenous antibiotics in neonates with probable bacterial infection (RAIN): a multicentre, randomised, open-label, non-inferiority trial
Fleur M Keij, René F Kornelisse, Nico G Hartwig, et al. Lancet Child Adolesc Health. 2022 Nov;6(11):799-809. doi: 10.1016/S2352-4642(22)00245-0. Epub 2022 Sep 9.
Background: Switching from intravenous antibiotic therapy to oral antibiotic therapy among neonates is not yet practised in high-income settings due to uncertainties about exposure and safety. We aimed to assess the efficacy and safety of early intravenous-to-oral antibiotic switch therapy compared with a full course of intravenous antibiotics among neonates with probable bacterial infection. Methods: In this multicentre, randomised, open-label, non-inferiority trial, patients were recruited at 17 hospitals in the Netherlands. Neonates (postmenstrual age ≥35 weeks, postnatal age 0-28 days, bodyweight ≥2 kg) in whom prolonged antibiotic treatment was indicated because of a probable bacterial infection, were randomly assigned (1:1) to switch to an oral suspension of amoxicillin 75 mg/kg plus clavulanic acid 18·75 mg/kg (in a 4:1 dosing ratio, given daily in three doses) or continue on intravenous antibiotics (according to the local protocol). Both groups were treated for 7 days. The primary outcome was cumulative bacterial reinfection rate 28 days after treatment completion. A margin of 3% was deemed to indicate non-inferiority, thus if the reinfection rate in the oral amoxicillin-clavulanic acid group was less than 3% higher than that in the intravenous antibiotic group the null hypothesis would be rejected. The primary outcome was assessed in the intention-to-treat population (ie, all patients who were randomly assigned and completed the final follow-up visit on day 35) and the per protocol population. Safety was analysed in all patients who received at least one administration of the allocated treatment and who completed at least one follow-up visit. Secondary outcomes included clinical deterioration and duration of hospitalisation. This trial was registered with ClinicalTrials.gov, NCT03247920, and EudraCT, 2016-004447-36. Findings: Between Feb 8, 2018 and May 12, 2021, 510 neonates were randomly assigned (n=255 oral amoxicillin-clavulanic group; n=255 intravenous antibiotic group). After excluding those who withdrew consent (n=4), did not fulfil inclusion criteria (n=1), and lost to follow-up (n=1), 252 neonates in each group were included in the intention-to-treat population. The cumulative reinfection rate at day 28 was similar between groups (one [<1%] of 252 neonates in the amoxicillin-clavulanic acid group vs one [<1%] of 252 neonates in the intravenous antibiotics group; between-group difference 0 [95% CI -1·9 to 1·9]; pnon-inferiority<0·0001). No statistically significant differences were observed in reported adverse events (127 [50%] vs 113 [45%]; p=0·247). In the intention-to-treat population, median duration of hospitalisation was significantly shorter in the amoxicillin-clavulanic acid group than the intravenous antibiotics group (3·4 days [95% CI 3·0-4·1] vs 6·8 days [6·5-7·0]; p<0·0001). Interpretation: An early intravenous-to-oral antibiotic switch with amoxicillin-clavulanic acid is non-inferior to a full course of intravenous antibiotics in neonates with probable bacterial infection and is not associated with an increased incidence of adverse events. Funding: The Netherlands Organization for Health Research and Development, Innovatiefonds Zorgverzekeraars, and the Sophia Foundation for Scientific Research.
Recommended Products
BBF-03908 | Miltefosine | Inquiry |
BBF-00968 | Homoalanosine | Inquiry |
BBF-04301 | Tulathromycin A | Inquiry |
BBF-04624 | Sulbactam Sodium | Inquiry |
BBF-05781 | Emodepside | Inquiry |
BBF-00693 | Ansamitocin P-3 | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳