Dihydrodaunomycin
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-01401 |
CAS | |
Molecular Weight | 529.53 |
Molecular Formula | C27H31NO10 |
Online Inquiry
Description
Dihydrodaunomycin is produced by the strain of Streptomyces peucetius var. carneus. The antibacterial and antitumor activities were similar to donoramycin.
Specification
Synonyms | 13-Dihydrodaunorubicin; Duborimycin; Leukaemomycin D; Antibiotic 20-798RP |
IUPAC Name | (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(1-hydroxyethyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione |
Canonical SMILES | CC1C(C(CC(O1)OC2CC(CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(C)O)O)N)O |
InChI | InChI=1S/C27H31NO10/c1-10-22(30)14(28)7-17(37-10)38-16-9-27(35,11(2)29)8-13-19(16)26(34)21-20(24(13)32)23(31)12-5-4-6-15(36-3)18(12)25(21)33/h4-6,10-11,14,16-17,22,29-30,32,34-35H,7-9,28H2,1-3H3/t10-,11?,14-,16-,17-,22+,27-/m0/s1 |
InChI Key | HJEZFVLKJYFNQW-FKKRWUELSA-N |
Properties
Antibiotic Activity Spectrum | neoplastics (Tumor) |
Melting Point | 230-232°C |
Reference Reading
1. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy
Elena Lecumberri, Yves Marc Dupertuis, Raymond Miralbell, Claude Pichard Clin Nutr. 2013 Dec;32(6):894-903. doi: 10.1016/j.clnu.2013.03.008. Epub 2013 Mar 15.
Background & aims: Green tea catechins, especially epigallocatechin-3-gallate (EGCG), have been associated with cancer prevention and treatment. This has resulted in an increased number of studies evaluating the effects derived from the use of this compound in combination with chemo/radiotherapy. This review aims at compiling latest literature on this subject. Methods: Keywords including EGCG, cancer, chemotherapy, radiotherapy and side effects, were searched using PubMed and ScienceDirect databases to identify, analyze, and summarize the research literature on this topic. Most of the studies on this subject up to date are preclinical. Relevance of the findings, impact factor, and date of publication were critical parameters for the studies to be included in the review. Results: Additive and synergistic effects of EGCG when combined with conventional cancer therapies have been proposed, and its anti-inflammatory and antioxidant activities have been related to amelioration of cancer therapy side effects. However, antagonistic interactions with certain anticancer drugs might limit its clinical use. Conclusions: The use of EGCG could enhance the effect of conventional cancer therapies through additive or synergistic effects as well as through amelioration of deleterious side effects. Further research, especially at the clinical level, is needed to ascertain the potential role of EGCG as adjuvant in cancer therapy.
2. The electromembrane extraction of pharmaceutical compounds from animal tissues
Hana Bavlovič Piskáčková, Petra Kollárová-Brázdová, Radim Kučera, Miloslav Macháček, Stig Pedersen-Bjergaard, Petra Štěrbová-Kovaříková Anal Chim Acta. 2021 Sep 8;1177:338742. doi: 10.1016/j.aca.2021.338742. Epub 2021 Jun 11.
The reliable analysis of various compounds from tissue requires a tedious sample preparation. The sample pretreatment usually involves proper homogenization that facilitates extraction of target analytes, followed by an appropriate sample clean-up preventing matrix effects. Electromembrane extraction (EME) seems to have a significant potential to streamline the whole procedure. In this study, the applicability of EME for direct isolation of analytes from animal tissues was investigated for the first time. Extraction conditions were systematically optimized to isolate model analytes (daunorubicin and its metabolite daunorubicinol) from various tissues (myocardium, skeletal muscle and liver) coming from a pharmacokinetic study in rabbits. The relative recoveries of daunorubicin and its metabolite in all tissues, determined by the UHPLC-MS/MS method, were higher than 66 and 75%, respectively. Considerably low matrix effects (0 ± 8% with CV lower than 6%) and negligible content of phospholipids detected in EME extracts demonstrate the exceptional effectiveness of this microextraction approach in purification of tissue samples. The difference in the concentrations of the analytes determined after EME and reference liquid-liquid extraction of real tissue samples was lower than 12%, which further emphasized the trustworthiness of EME. Moreover, the considerable time reduction needed for sample treatment in case of EME must be emphasized. This study proved that EME is a simple, effective and reliable microextraction technique capable of direct extraction of the analytes from pulverized tissues without the need for an additional homogenization or purification step.
3. Novel aromatic polyketides from soil Streptomyces spp.: purification, characterization and bioactivity studies
Sunita Bundale, Deovrat Begde, Dhanashree Pillai, Karishma Gangwani, Nandita Nashikkar, Tukaram Kadam, Avinash Upadhyay World J Microbiol Biotechnol. 2018 Apr 24;34(5):67. doi: 10.1007/s11274-018-2448-1.
Aromatic polyketides are important therapeutic compounds which include front line antibiotics and anticancer drugs. Since most of the aromatic polyketides are known to be produced by soil dwelling Streptomyces, 54 Streptomyces strains were isolated from the soil samples. Five isolates, R1, B1, R3, R5 and Y8 were found to be potent aromatic polyketide producers and were identified by 16S rRNA gene sequencing as Streptomyces spectabilis, Streptomyces olivaceus, Streptomyces purpurascens, Streptomyces coeruleorubidus and Streptomyces lavendofoliae respectively. Their sequences have been deposited in the GenBank under the accession numbers KF468818, KF681280, KF395224, KF527511 and KF681281 respectively. The Streptomyces strains were cultivated in the media following critically optimised culture conditions. The resulting broth extracts were fractionated on a silica gel column and preparative TLC to obtain pure compounds. The pure compounds were tested for bioactivity and the most potent compound from each isolate was identified by UV-Vis, IR and NMR spectroscopic methods. Isolated S. spectabilis (R1), yielded one potent compound identified as dihydrodaunomycin with an MIC of 4 µg/ml against Bacillus cereus and an IC50 value of 24 µM against HeLa. S. olivaceus (B1), yielded a comparatively less potent compound, elloramycin. S. purpurascens (R3) yielded three compounds, rhodomycin, epelmycin and obelmycin. The most potent compound was rhodomycin with an MIC of 2 µg/ml against B. cereus and IC50 of 15 µM against HeLa. S. coeruleorubidus (R5), yielded daunomycin showing an IC50 of 10 µM and also exhibiting antimetastatic properties against HeLa. S. lavendofoliae (Y8), yielded a novel aclacinomycin analogue with IC50 value of 2.9 µM and potent antimetastatic properties at 1 µM concentration against HeLa. The study focuses on the characterization of aromatic polyketides from soil Streptomyces spp., which can serve as potential candidates for development of chemotherapeutic drugs in future.
Recommended Products
BBF-05880 | N-Me-L-Ala-maytansinol | Inquiry |
BBF-03794 | Geneticin sulfate | Inquiry |
BBF-02576 | Pneumocandin B0 | Inquiry |
BBF-03816 | Milbemycin oxime | Inquiry |
BBF-03819 | Spinosyn A | Inquiry |
BBF-01829 | Deoxynojirimycin | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳