Lysobactin
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-01534 |
CAS | 118374-47-3 |
Molecular Weight | 1276.48 |
Molecular Formula | C58H97N15O17 |
Purity | >98% |
Online Inquiry
Description
Lysobactin, also known as katanosin B, is a potent antibiotic with in vivo efficacy against Staphylococcus aureus and Streptococcus pneumoniae. It was previously shown to inhibit peptidoglycan (PG) biosynthesis.
Specification
Synonyms | Katanosin B; Katanosin A, 7-L-isoleucine- |
IUPAC Name | (2R)-2-amino-N-[(2S)-1-[[(3S,6S,12S,15S,18R,21S,24S,27S,28R)-6-[(1S)-2-amino-1-hydroxy-2-oxoethyl]-15-[(2S)-butan-2-yl]-18-[3-(diaminomethylideneamino)propyl]-12-[(1S)-1-hydroxyethyl]-3-(hydroxymethyl)-24-[(1R)-1-hydroxy-2-methylpropyl]-21-(2-methylpropyl)-2,5,8,11,14,17,20,23,26-nonaoxo-28-phenyl-1-oxa-4,7,10,13,16,19,22,25-octazacyclooctacos-27-yl]amino]-4-methyl-1-oxopentan-2-yl]-4-methylpentanamide |
Canonical SMILES | CCC(C)C1C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)OC(C(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCN=C(N)N)CC(C)C)C(C(C)C)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)N)C2=CC=CC=C2)CO)C(C(=O)N)O)C(C)O |
InChI | InChI=1S/C58H97N15O17/c1-12-30(10)39-53(85)71-40(31(11)75)52(84)64-24-38(76)69-42(45(78)47(60)79)55(87)68-37(25-74)57(89)90-46(32-17-14-13-15-18-32)43(73-51(83)36(23-28(6)7)66-48(80)33(59)21-26(2)3)56(88)72-41(44(77)29(8)9)54(86)67-35(22-27(4)5)50(82)65-34(49(81)70-39)19-16-20-63-58(61)62/h13-15,17-18,26-31,33-37,39-46,74-75,77-78H,12,16,19-25,59H2,1-11H3,(H2,60,79)(H,64,84)(H,65,82)(H,66,80)(H,67,86)(H,68,87)(H,69,76)(H,70,81)(H,71,85)(H,72,88)(H,73,83)(H4,61,62,63)/t30-,31-,33+,34+,35-,36-,37-,39-,40-,41-,42-,43-,44+,45-,46+/m0/s1 |
InChI Key | KQMKBWMQSNKASI-AVSFGBOWSA-N |
Properties
Appearance | Colorless Crystalline |
Antibiotic Activity Spectrum | Gram-positive bacteria |
Melting Point | 240-245°C |
Density | 1.42 g/cm3 |
Reference Reading
1. The Mechanism of Action of Lysobactin
Veerasak Srisuknimit, Yuan Qiao, Kaitlin Schaefer, Heinrich Steinmetz, Daniel Kahne, Rolf Müller, Suzanne Walker, Wonsik Lee J Am Chem Soc . 2016 Jan 13;138(1):100-3. doi: 10.1021/jacs.5b11807.
Lysobactin, also known as katanosin B, is a potent antibiotic with in vivo efficacy against Staphylococcus aureus and Streptococcus pneumoniae. It was previously shown to inhibit peptidoglycan (PG) biosynthesis, but its molecular mechanism of action has not been established. Using enzyme inhibition assays, we show that lysobactin forms 1:1 complexes with Lipid I, Lipid II, and Lipid II(A)(WTA), substrates in the PG and wall teichoic acid (WTA) biosynthetic pathways. Therefore, lysobactin, like ramoplanin and teixobactin, recognizes the reducing end of lipid-linked cell wall precursors. We show that despite its ability to bind precursors from different pathways, lysobactin's cellular mechanism of killing is due exclusively to Lipid II binding, which causes septal defects and catastrophic cell envelope damage.
2. Natural Products Lysobactin and Sorangicin A Show In Vitro Activity against Mycobacterium abscessus Complex
Christophe Courtine, Jaryd R Sullivan, Rolf Müller, Andréanne Lupien, Jacqueline Yao, Marcel A Behr, Jennifer Herrmann Microbiol Spectr . 2022 Nov 7;e0267222. doi: 10.1128/spectrum.02672-22.
The prevalence of lung disease caused by Mycobacterium abscessus is increasing among patients with cystic fibrosis. M. abscessus is a multidrug resistant opportunistic pathogen that is notoriously difficult to treat due to a lack of efficacious therapeutic regimens. Currently, there are no standard regimens, and treatment guidelines are based empirically on drug susceptibility testing. Thus, novel antibiotics are required. Natural products represent a vast pool of biologically active compounds that have a history of being a good source of antibiotics. Here, we screened a library of 517 natural products purified from fermentations of various bacteria, fungi, and plants against M. abscessus ATCC 19977. Lysobactin and sorangicin A were active against the M. abscessus complex and drug resistant clinical isolates. These natural products merit further consideration to be included in the M. abscessus drug pipeline.IMPORTANCEThe many thousands of people living with cystic fibrosis are at a greater risk of developing a chronic lung infection caused by Mycobacterium abscessus. Since M. abscessus is clinically resistant to most anti-TB drugs available, treatment options are limited to macrolides. Despite macrolide-based therapies, cure rates for M. abscessus lung infections are 50%. Using an in-house library of curated natural products, we identified lysobactin and sorangicin A as novel scaffolds for the future development of antimicrobials for patients with M. abscessus infections.
3. Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture
Jie Hou, Lars Robbel, Mohamed A Marahiel Chem Biol . 2011 May 27;18(5):655-64. doi: 10.1016/j.chembiol.2011.02.012.
Lysobactin (katanosin B) is a macrocyclic depsipeptide, displaying high antibacterial activity against human pathogens. In this work, we have identified and characterized the entire biosynthetic gene cluster responsible for lysobactin assembly. Sequential analysis of the Lysobacter sp. ATCC 53042 genome revealed the lysobactin gene cluster to encode two multimodular nonribosomal peptide synthetases. As the number of modules found within the synthetases LybA and LybB directly correlates with the primary sequence of lysobactin, a linear logic of lysobactin biosynthesis is proposed. Investigation of adenylation domain specificities in vitro confirmed the direct association between the synthetases and lysobactin biosynthesis. Furthermore, an unusual tandem thioesterase architecture of the LybB termination module was identified. Biochemical characterization of the individual thioesterases in vitro provides evidence that solely penultimate thioesterase domain mediates the cyclization and simultaneous release of lysobactin.
Recommended Products
BBF-05880 | N-Me-L-Ala-maytansinol | Inquiry |
BBF-05886 | Notoginsenoside R1 | Inquiry |
BBF-03488 | Streptozotocin | Inquiry |
BBF-03428 | Tubermycin B | Inquiry |
BBF-02582 | Polyporenic acid C | Inquiry |
BBF-02800 | DB-2073 | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳