2'-Amino-2'-deoxyadenosine

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

2'-Amino-2'-deoxyadenosine
Category Bioactive by-products
Catalog number BBF-00675
CAS 10414-81-0
Molecular Weight 266.26
Molecular Formula C10H14N6O3
Purity 98%

Online Inquiry

Description

It is produced by the strain of Actinomadura sp. No. SA-4427. It has anti-mycoplasma and anti-tumor effects.

Specification

Synonyms Hugamycin; 2'-Deoxy-2'-aminoadenosine; CHEMBL133809; 4-Amino-5-(6-amino-purin-9-yl)-2-hydroxymethyl-tetrahydro-furan-3-ol; 2AD; 2-Amino-2-deoxyadenosine; 9-(2'-Amino-2'-deoxy-β-D-ribofuranosyl)-adenine
Storage Store at 2-8°C
IUPAC Name (2R,3S,4R,5R)-4-amino-5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol
Canonical SMILES C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)CO)O)N)N
InChI InChI=1S/C10H14N6O3/c11-5-7(18)4(1-17)19-10(5)16-3-15-6-8(12)13-2-14-9(6)16/h2-5,7,10,17-18H,1,11H2,(H2,12,13,14)/t4-,5-,7-,10-/m1/s1
InChI Key CQKMBZHLOYVGHW-QYYRPYCUSA-N

Properties

Appearance White to Off-white Powder
Antibiotic Activity Spectrum mycobacteria; neoplastics (Tumor)
Boiling Point 657.6±65.0 °C (Predicted)
Melting Point 193-195 °C
Density 2.080±0.10 g/cm3 (Predicted)
Solubility Soluble in Water

Reference Reading

1.Alpha-anomeric deoxynucleotides, anoxic products of ionizing radiation, are substrates for the endonuclease IV-type AP endonucleases.
Ishchenko AA1, Ide H, Ramotar D, Nevinsky G, Saparbaev M. Biochemistry. 2004 Dec 7;43(48):15210-6.
Alpha-anomeric 2'-deoxynucleosides (alphadN) are one of the products formed by ionizing radiation (IR) in DNA under anoxic conditions. Alpha-2'-deoxyadenosine (alphadA) and alpha-thymidine (alphaT) are not recognized by DNA glycosylases, and are likely removed by the alternative nucleotide incision repair (NIR) pathway. Indeed, it has been shown that alphadA is a substrate for the Escherichia coli Nfo and human Ape1 proteins. However, the repair pathway for removal of alphadA and other alphadN in yeast is unknown. Here we report that alphadA when present in DNA is recognized by the Saccharomyces cerevisiae Apn1 protein, a homologue of Nfo. Furthermore, alphaT is a substrate for Nfo and Apn1. Kinetic constants indicate that alphadA and alphaT are equally good substrates, as a tetrahydrofuranyl (THF) residue, for Nfo and Apn1. Using E. coli and S. cerevisiae cell-free extracts, we have further substantiated the role of the nfo and apn1 gene products in the repair of alphadN.
2.2,6-Diaminopurinedeoxyriboside as a prodrug of deoxyguanosine in L1210 cells.
Weckbecker G, Cory JG. Cancer Res. 1987 May 1;47(9):2218-23.
The mode of action of the antiproliferative nucleoside analogue 2,6-diaminopurinedeoxyriboside (DAPdR) has been characterized in cultured L1210 cells. A marked concentration-dependent decrease in DNA synthesis and ribonucleotide reductase activity occurred in L1210 cells exposed to 0.05 to 1.0 mM DAPdR. Concomitantly, dGTP levels increased as much as 1100-fold as compared to untreated controls. Adenosine deaminase efficiently catalyzed DAPdR conversion to deoxyguanosine in vitro. In a comparative study, DAPdR and deoxyguanosine gave similar results. A 50% inhibition of cell growth during a 72-h incubation was achieved with 0.14 mM DAPdR or 0.26 mM deoxyguanosine. Deoxycytidine rescued the L1210 cells from DAPdR and deoxyguanosine toxicity to the same extent. DAPdR and deoxyguanosine counteracted the toxic effects of mycophenolic acid with the same efficiency. While DAPdR was not metabolized to its 5'-triphosphate, 2,6-diaminopurine was converted to 2,6-diaminopurineriboside 5'-triphosphate in L1210 cells; accordingly 50% inhibition of cell growth occurred at 0.
3.The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions.
Horn WT1, Convery MA, Stonehouse NJ, Adams CJ, Liljas L, Phillips SE, Stockley PG. RNA. 2004 Nov;10(11):1776-82.
We have determined the structure to 2.8 A of an RNA aptamer (F5), containing 2'-deoxy-2-aminopurine (2AP) at the -10 position, complexed with MS2 coat protein by soaking the RNA into precrystallised MS2 capsids. The -10 position of the RNA is an important determinant of binding affinity for coat protein. Adenine at this position in other RNA stem-loops makes three hydrogen bonds to protein functional groups. Substituting 2AP for the -10 adenine in the F5 aptamer yields an RNA with the highest yet reported affinity for coat protein. The refined X-ray structure shows that the 2AP base makes an additional hydrogen bond to the protein compared to adenine that is presumably the principal origin of the increased affinity. There are also slight changes in phosphate backbone positions compared to unmodified F5 that probably also contribute to affinity. Such phosphate movements are common in structures of RNAs bound to the MS2 T = 3 protein shell and highlight problems for de novo design of RNA binding ligands.
4.Polymer-assisted solution-phase synthesis of 2'-amido-2'-deoxyadenosine derivatives targeted at the NAD(+)-binding sites of parasite enzymes.
Golisade A1, Bressi JC, Van Calenbergh S, Gelb MH, Link A. J Comb Chem. 2000 Sep-Oct;2(5):537-44.
A polymer-assisted solution-phase (PASP) synthesis of lead structure analogues ready for biological testing without the demand for chromatographic purification is described. Carboxylic acids are coupled to the Kenner or Ellman safety catch linker, respectively, activated by methylation or cyanomethylation and subsequently transferred to the 2'-amino group of the 2'-amino-2'-deoxyadenosine scaffold (5). The chemoselective attack of weakly nucleophilic amino groups on the N-alkylated N-acyl sulfonamide linker allows for the synthesis of amides 6 in high yields without the need for protection of primary and secondary hydroxyl functions. Thus, the use of 4-sulfamylbenzoylaminomethyl polystyrene is reported for the construction of chemoselective polymer-supported acylating reagents instead of its known use as linker in solid-phase peptide or organic synthesis. This approach is demonstrated to be well suited to obtain 2'-amido-2'-deoxyadenosine derivatives 6 in parallel format.

Recommended Products

BBF-01825 Loganin Inquiry
BBF-03819 Spinosyn A Inquiry
BBF-03753 Baicalin Inquiry
BBF-03800 Moxidectin Inquiry
BBF-05817 Astaxanthin Inquiry
BBF-03880 Cyclopamine Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code

Copyright © 2024 BOC Sciences. All rights reserved.

cartIcon
Inquiry Basket