Chromomycin A3

Chromomycin A3

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Chromomycin A3
Category Antineoplastic
Catalog number BBF-00640
CAS 7059-24-7
Molecular Weight 1183.24
Molecular Formula C57H82O26
Purity >98% by HPLC

Online Inquiry

Description

Chromomycin A3 is produced by the strain of Streptomyces olivochromogenes 69895. The major component of the chromomycin complex of the aureolic acid class; isolated from several streptomyces species; exhibits a broad biological profile as an antibacterial, antifungal and antitumour agent; binds reversibly to GC-specific DNA ligand in the minor groove which inhibits transcription, DNA gyrase and topoisomerase II activity.

Specification

Synonyms Aburamycin; Toyomycin; NSC 58514; B 599-III; SR1768E
Storage -20°C
IUPAC Name [(2R,3S,4R,6S)-6-[[(6S,7S)-6-[(2S,4R,5R,6R)-4-[(2S,4R,5R,6R)-4-[(2S,4S,5S,6S)-5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-[(1S,3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6H-anthracen-2-yl]oxy]-4-[(2R,4R,5R,6R)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy-2-methyloxan-3-yl] acetate
Canonical SMILES CC1C(C(CC(O1)OC2C(CC3=C(C2=O)C(=C4C(=C3)C=C(C(=C4O)C)OC5CC(C(C(O5)C)OC(=O)C)OC6CC(C(C(O6)C)OC)O)O)C(C(=O)C(C(C)O)O)OC)OC7CC(C(C(O7)C)O)OC8CC(C(C(O8)C)OC(=O)C)(C)O)O
InChI InChI=1S/C57H82O26/c1-21-34(79-40-19-37(53(26(6)75-40)77-28(8)59)82-38-16-33(61)52(70-11)25(5)74-38)15-31-13-30-14-32(54(71-12)51(68)46(63)22(2)58)55(50(67)44(30)49(66)43(31)45(21)62)83-41-18-35(47(64)24(4)73-41)80-39-17-36(48(65)23(3)72-39)81-42-20-57(10,69)56(27(7)76-42)78-29(9)60/h13,15,22-27,32-33,35-42,46-48,52-56,58,61-66,69H,14,16-20H2,1-12H3/t22-,23-,24-,25-,26-,27+,32+,33-,35-,36-,37-,38-,39+,40+,41+,42+,46+,47-,48-,52+,53+,54+,55+,56+,57+/m1/s1
InChI Key ZYVSOIYQKUDENJ-WKSBCEQHSA-N
Source Streptomyces sp.

Properties

Appearance Bright Yellow Powder
Antibiotic Activity Spectrum fungi; tumor
Melting Point 183 °C
Solubility Soluble in ethanol, methanol, DMF or DMSO. Limited water solubility.

Reference Reading

1. Chromomycin A3 binds to left-handed poly(dG-m5dC)
B P Roques, J B LePecq, M Delepierre, R H Shafer Eur J Biochem . 1988 Apr 15;173(2):377-82. doi: 10.1111/j.1432-1033.1988.tb14009.x.
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.
2. Chromomycin A2 induces autophagy in melanoma cells
Hozana Patrícia S Freitas, Diego Veras Wilke, Larissa Alves Guimarães, Danilo Damasceno Rocha, Jesús Martín, Otília Deusdênia Loiola Pessoa, Paula Christine Jimenez, Thiciana da Silva Sousa, Letícia Veras Costa-Lotufo, Fernando Reyes Mar Drugs . 2014 Dec 4;12(12):5839-55. doi: 10.3390/md12125839.
The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins.
3. Role of magnesium ion in the interaction between chromomycin A3 and DNA: binding of chromomycin A3-Mg2+ complexes with DNA
R Sen, P Aich, D Dasgupta Biochemistry . 1992 Mar 24;31(11):2988-97. doi: 10.1021/bi00126a021.
Chromomycin A3 is an antitumor antibiotic which blocks macromolecular synthesis via reversible interaction with DNA template only in the presence of divalent metal ions such as Mg2+. The role of Mg2+ in this antibiotic-DNA interaction is not well understood. We approached the problem in two steps via studies on the interaction of (i) chromomycin A3 and Mg2+ and (ii) chromomycin A3-Mg2+ complex(es) and DNA. Spectroscopic techniques such as absorption, fluorescence, and CD were employed for this purpose. The results could be summed up in two parts. Absorption, fluorescence, and CD spectra of the antibiotic change upon addition of Mg2+ due to complex formation between them. Analysis of the quantitative dependence of change in absorbance of chromomycin A3 (at 440 nm) upon input concentration of Mg2+ indicates formation of two types of complexes with different stoichiometries and formation constants. Trends in change of fluorescence and CD spectroscopic features of the antibiotic in the presence of Mg2+ at different concentrations further corroborate this result. The two complexes are referred to as complex I (with 1:1 stoichiometry in terms of chromomycin A3:Mg2+) and complex II (with 2:1 stoichiometry in terms of chromomycin A3:Mg2+), respectively, in future discussions. The interactions of these complexes with calf thymus DNA were examined to check whether they bind differently to the same DNA. Evaluation of binding parameters, intrinsic binding constants, and binding stoichiometry, by means of spectrophotometric and fluorescence titrations, shows that they are different. Distinctive spectroscopic features of complexes I and II, when they are bound to DNA, also support that they bind differently to the above DNA. Measurement of thermodynamic parameters characterizing their interactions with calf thymus DNA shows that complex I-DNA interaction is exothermic, in contrast to complex II-DNA interaction, which is endothermic. This feature implies a difference in the molecular nature of the interactions between the complexes and calf thymus DNA. These observations are novel and significant to understand the antitumor property of the antibiotic. They are also discussed to provide explanations for the earlier reports that in some cases appeared to be contradictory.

Recommended Products

BBF-01829 Deoxynojirimycin Inquiry
BBF-03791 Daptomycin Inquiry
BBF-05730 Abamectin Inquiry
BBF-03761 Tunicamycin Inquiry
BBF-03796 Bambermycin Inquiry
BBF-03819 Spinosyn A Inquiry

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket