Gramicidin S dihydrochloride
* Please be kindly noted products are not for therapeutic use. We do not sell to patients.
Category | Antibiotics |
Catalog number | BBF-01277 |
CAS | 15207-30-4 |
Molecular Weight | 1214.36 |
Molecular Formula | C60H92N12O10.2HCl |
Online Inquiry
Description
It is produced by the strain of Bacillus brevis. It mainly has anti-gram-positive bacterial activity.
Specification
Synonyms | Gramicidin S 2HCl |
IUPAC Name | (3R,6S,9S,12S,15S,21R,24S,27S,30S,33S)-9,27-bis(3-aminopropyl)-3,21-dibenzyl-6,24-bis(2-methylpropyl)-12,30-di(propan-2-yl)-1,4,7,10,13,19,22,25,28,31-decazatricyclo[31.3.0.015,19]hexatriacontane-2,5,8,11,14,20,23,26,29,32-decone;dihydrochloride |
Canonical SMILES | CC(C)CC1C(=O)NC(C(=O)N2CCCC2C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N3CCCC3C(=O)NC(C(=O)NC(C(=O)N1)CCCN)C(C)C)CC4=CC=CC=C4)CC(C)C)CCCN)C(C)C)CC5=CC=CC=C5.Cl.Cl |
InChI | InChI=1S/C60H92N12O10.2ClH/c1-35(2)31-43-53(75)67-45(33-39-19-11-9-12-20-39)59(81)71-29-17-25-47(71)55(77)70-50(38(7)8)58(80)64-42(24-16-28-62)52(74)66-44(32-36(3)4)54(76)68-46(34-40-21-13-10-14-22-40)60(82)72-30-18-26-48(72)56(78)69-49(37(5)6)57(79)63-41(23-15-27-61)51(73)65-43;;/h9-14,19-22,35-38,41-50H,15-18,23-34,61-62H2,1-8H3,(H,63,79)(H,64,80)(H,65,73)(H,66,74)(H,67,75)(H,68,76)(H,69,78)(H,70,77);2*1H/t41-,42-,43-,44-,45+,46+,47-,48-,49-,50-;;/m0./s1 |
InChI Key | KCUAVDXLFXNGDG-MZFDKZDRSA-N |
Properties
Appearance | Flaky Crystal |
Antibiotic Activity Spectrum | Gram-positive bacteria |
Melting Point | 277-278 °C |
Solubility | Soluble in Ethanol |
Reference Reading
1. Biofilms: strategies for metal corrosion inhibition employing microorganisms
Rongjun Zuo Appl Microbiol Biotechnol. 2007 Oct;76(6):1245-53. doi: 10.1007/s00253-007-1130-6. Epub 2007 Aug 16.
Corrosion causes dramatic economic loss. Currently widely used corrosion control strategies have disadvantages of being expensive, subject to environmental restrictions, and sometimes inefficient. Studies show that microbial corrosion inhibition is actually a common phenomenon. The present review summarizes recent progress in this novel strategy: corrosion control using beneficial bacteria biofilms. The possible mechanisms may involve: (1) removal of corrosive agents (such as oxygen) by bacterial physiological activities (e.g., aerobic respiration), (2) growth inhibition of corrosion-causing bacteria by antimicrobials generated within biofilms [e.g., sulfate-reducing bacteria (SRB) corrosion inhibition by gramicidin S-producing Bacillus brevis biofilm], (3) generation of protective layer by biofilms (e.g., Bacillus licheniformis biofilm produces on aluminum surface a sticky protective layer of gamma-polyglutamate). Successful utilization of this novel strategy relies on advances in study at the interface of corrosion engineering and biofilm biology.
2. Preparation of the multienzyme system gramicidin S-synthetase 2 with an aqueous three-phase system
A Kirchner, M Simonis, H von Döhren J Chromatogr. 1987 Jun 19;396:199-207. doi: 10.1016/s0021-9673(01)94057-9.
The distribution of gramicidin S-synthetase activity from disrupted cells suspended in aqueous two- and three-phase systems was investigated. An optimized three-phase system containing 5% dextran, 8% Ficoll, 11% PEG and 6.7% disrupted cells was found to be effective in extracting gramicidin S-synthetase activity. The activity yield achieved was higher in comparison to other preparation methods, and the subsequent purification steps were greatly facilitated. The time needed for the preparation of the labile gramicidin S-synthetase was considerably reduced. The combination of the aqueous phase extraction with chromatographic methods yielded 19 mg gramicidin S-synthetase 2 in essentially pure form from 30 g (wet weight) of cells.
3. Proton conductivity of glycosaminoglycans
John Selberg, Manping Jia, Marco Rolandi PLoS One. 2019 Mar 8;14(3):e0202713. doi: 10.1371/journal.pone.0202713. eCollection 2019.
Proton conductivity is important in many natural phenomena including oxidative phosphorylation in mitochondria and archaea, uncoupling membrane potentials by the antibiotic Gramicidin, and proton actuated bioluminescence in dinoflagellate. In all of these phenomena, the conduction of protons occurs along chains of hydrogen bonds between water and hydrophilic residues. These chains of hydrogen bonds are also present in many hydrated biopolymers and macromolecule including collagen, keratin, chitosan, and various proteins such as reflectin. All of these materials are also proton conductors. Recently, our group has discovered that the jelly found in the Ampullae of Lorenzini- shark's electro-sensing organs- is the highest naturally occurring proton conducting substance. The jelly has a complex composition, but we proposed that the conductivity is due to the glycosaminoglycan keratan sulfate (KS). Here we measure the proton conductivity of hydrated keratan sulfate purified from Bovine Cornea. PdHx contacts at 0.50 ± 0.11 mS cm -1, which is consistent to that of Ampullae of Lorenzini jelly at 2 ± 1 mS cm -1. Proton conductivity, albeit with lower values, is also shared by other glycosaminoglycans with similar chemical structures including dermatan sulfate, chondroitin sulfate A, heparan sulfate, and hyaluronic acid. This observation supports the relationship between proton conductivity and the chemical structure of biopolymers.
Recommended Products
BBF-03862 | Cefozopran hydrochloride | Inquiry |
BBF-05762 | Cyclosporin B | Inquiry |
BBF-00693 | Ansamitocin P-3 | Inquiry |
BBF-05763 | Cyclosporin C | Inquiry |
BBF-03904 | Nosiheptide | Inquiry |
BBF-05781 | Emodepside | Inquiry |
Bio Calculators
* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2
* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O √ c22h30n40 ╳