Chlorflavonin

Chlorflavonin

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Chlorflavonin
Category Antibiotics
Catalog number BBF-00305
CAS 23363-64-6
Molecular Weight 378.76
Molecular Formula C18H15ClO7

Online Inquiry

Description

It is produced by the strain of Aspergillus candidus. Chlorflavonin has the activities of anti-aspergillus, yeast, botrytis, and other fungal. Among these fungi, anti-aspergillus fumigata activity is particularly strong, the minimum inhibitory concentration up to 0.08 μg/mL.

Specification

Synonyms 3'-Chloro-2',5-dihydroxy-3,7,8-trimethoxyflavone; Flavone, 3'-chloro-2',5-dihydroxy-3,7,8-trimethoxy-
IUPAC Name 2-(3-chloro-2-hydroxyphenyl)-5-hydroxy-3,7,8-trimethoxychromen-4-one
Canonical SMILES COC1=C(C2=C(C(=C1)O)C(=O)C(=C(O2)C3=C(C(=CC=C3)Cl)O)OC)OC
InChI InChI=1S/C18H15ClO7/c1-23-11-7-10(20)12-14(22)18(25-3)15(26-17(12)16(11)24-2)8-5-4-6-9(19)13(8)21/h4-7,20-21H,1-3H3
InChI Key JLSQXYITDXJTKL-UHFFFAOYSA-N

Properties

Appearance Yellow Crystallineline
Antibiotic Activity Spectrum yeast; fungi
Melting Point 212 °C
Solubility Soluble in DMF, Chloroform and Ethanol (Slightly)

Reference Reading

1. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species
Inge Kjærbølling, Tammi C Vesth, Jens C Frisvad, et al. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E753-E761. doi: 10.1073/pnas.1715954115. Epub 2018 Jan 9.
The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.
2. Total Synthesis of the Antimycobacterial Natural Product Chlorflavonin and Analogs via a Late-Stage Ruthenium(II)-Catalyzed ortho-C(sp2)-H-Hydroxylation
Alexander Berger, Talea Knak, Anna-Lene Kiffe-Delf, Korana Mudrovcic, Vinayak Singh, Mathew Njoroge, Bjoern B Burckhardt, Mohanraj Gopalswamy, Beate Lungerich, Lutz Ackermann, Holger Gohlke, Kelly Chibale, Rainer Kalscheuer, Thomas Kurz Pharmaceuticals (Basel). 2022 Aug 10;15(8):984. doi: 10.3390/ph15080984.
The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) endanger the World Health Organization's (WHO) goal to end the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid chlorflavonin by selective ruthenium(II)-catalyzed ortho-C(sp2)-H-hydroxylation of a substituted 3'-methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of 14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against Mycobacterium tuberculosis (Mtb) and their cytotoxicity against various human cell lines. The most promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against the virulent H37Rv strain of Mtb (Minimal Inhibitory Concentrations (MIC90) = 0.78 μm). In addition, we determined the chemical and metabolic stability as well as the pKa values of chlorflavonin and bromflavonin. Furthermore, we established a quantitative structure-activity relationship model using a thermodynamic integration approach. Our computations may be used for suggesting further structural changes to develop improved derivatives.
3. Discovery of a Unique Flavonoid Biosynthesis Mechanism in Fungi by Genome Mining
Wei Zhang, Xuan Zhang, Dandan Feng, Yajing Liang, Zhenying Wu, Siyu Du, Yu Zhou, Ce Geng, Ping Men, Chunxiang Fu, Xuenian Huang, Xuefeng Lu Angew Chem Int Ed Engl. 2023 Jan 26;e202215529. doi: 10.1002/anie.202215529. Online ahead of print.
Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket